scholarly journals Performance Research and Optimization of Sound Insulation Hood of Air Compressor Unit

2021 ◽  
Vol 11 (21) ◽  
pp. 10364
Author(s):  
Huagen Wu ◽  
Yuqi Shen ◽  
Mengtao Liang ◽  
Jiankang Liu ◽  
Jingjing Wu ◽  
...  

The noise control of a compressor has always been a hot spot in the field of industrial application. In this paper, the air inlet structure of the sound insulation hood of an air compressor unit was studied and improved. Acoustic finite element numerical simulation analysis of the sound insulation hood model was carried out using the acoustic software LMS Virtual Lab Acoustics. The simulation results were compared with the experimental data to verify the correctness of the model, and the theoretical results showed a good agreement with the experiment data. The sound insulation performance of the sound insulation hood under different structures was also investigated in this paper. The results show that the main source of unit noise leakage is outward radiation through the air inlet. In addition, the noise at the air inlet of the unit and the overall noise were significantly reduced compared with the traditional sound insulation hood upon installing 120° and 90° diaphragm structures on the inner wall of the air inlet. The optimization results show that the noise reduction effect of the sound insulation hood with a 90° diaphragm structure was better than that with a 120° diaphragm structure.

2015 ◽  
Vol 752-753 ◽  
pp. 698-701
Author(s):  
Kyoung Woo Kim ◽  
Jun Oh Yeon ◽  
Kwan Seop Yang

Floating floor structures installed with resilient materials are commonly used to reduce sound from floor impacts. Resilient materials minimize the transmission of vibrations by absorbing shock vibrations occurring on the upper part. The floor impact sound reduction performance of resilient materials is related to the dynamic stiffness, which is a physical characteristic of materials. However, the dynamic stiffness varies according to the increase in the loading time of the load that is installed on the upper part of resilient materials. The dynamic stiffness values increase with an increase in the loading time; an increased dynamic stiffness value decreases the vibration reduction effect. The present study focuses on a floor structure installed with resilient materials, and identifies the degree of reduction in floor impact sound insulation performance with the elapse of time. The insulation of sound from lightweight impact sound decreased with the elapse of time, whereas the heavyweight impact sound did not show significant changes.


2017 ◽  
Vol 23 (55) ◽  
pp. 903-908
Author(s):  
Manabu TANAKA ◽  
Tsuyoshi MURAKAMI ◽  
Yusuke KASAI ◽  
Makoto KAWAI

2021 ◽  
Vol 263 (2) ◽  
pp. 4402-4409
Author(s):  
Atsuo Hiramitsu ◽  
Susumu Hirakawa ◽  
Takahiro Tsuchimoto ◽  
Takashi Yamauchi

The floor impact noise generated in a building often causes problems among residents. The floor impact sound insulation performance of timber construction buildings is lower than that of concrete construction. However, due to the large supply of wood and the stress-relieving effects of wood, the use of wood is being promoted around the world. In Japan, the Act on the Promotion of the Utilization of Wood in Public Buildings was enforced to promote the use of CLT (Cross Laminated Timber) for the effective use of wood. We have been experimentally investigating the effect of floor finish structure in CLT model building. In this paper, we report the measurement results of the change in floor impact sound insulation performance when the suspended ceiling structure was changed. As results, it was confirmed that the effect of the sound-absorbing material in the ceiling cavity and the effect of the double-layer ceiling board were effective. In addition, it was clarified that the dry-type double floor structure with rubber vibration insulator on its legs is an effective floor finish structure for improvement of heavy and light weight floor impact sound insulation performances.


2021 ◽  
Vol 263 (3) ◽  
pp. 3064-3072
Author(s):  
Takashi Yamauchi ◽  
Atsuo Hiramitsu ◽  
Susumu Hirakawa

The air layer between the interior finishes and the structure is used as piping and wiring space. In many cases, ceilings and dry-type double floors are commonly constructed in Japan. However, the effect of the air layer of ceilings and dry-type double floors on the heavy-weight floor impact sound insulation performance has not yet quantitatively investigated. Therefore, in this study, the same floor and ceiling structures were constructed for concrete and CLT buildings, and the heavy-weight floor impact sound was investigated. As results, it was confirmed that the reduction amount of the heavy-weight floor impact sound by the ceiling tended to be smaller in CLT buildings than in concrete buildings. However, the trends were similar. Due to the dry-type double floor structure, the heavy-weight floor impact sound level was increased in concrete building and decreased in CLT building at 63 Hz in the octave band center frequency band. Therefore, it can be said that the dry-type double floor structure can be used to improve the heavy-weight floor impact sound performance in the CLT building.


2016 ◽  
Vol 18 (4) ◽  
pp. 2574-2586 ◽  
Author(s):  
Xiao-mei Xu ◽  
Yi-ping Jiang ◽  
Heow-pueh Lee ◽  
Ning Chen

Sign in / Sign up

Export Citation Format

Share Document