scholarly journals Transcriptome Analyses of In Vitro Exercise Models by Clenbuterol Supplementation or Electrical Pulse Stimulation

2021 ◽  
Vol 11 (21) ◽  
pp. 10436
Author(s):  
Taku Fukushima ◽  
Miho Takata ◽  
Ayano Kato ◽  
Takayuki Uchida ◽  
Takeshi Nikawa ◽  
...  

Exercise has beneficial effects on human health and is affected by two different pathways; motoneuron and endocrine. For the advancement of exercise research, in vitro exercise models are essential. We established two in vitro exercise models using C2C12 myotubes; EPS (electrical pulse stimulation) for a motoneuron model and clenbuterol, a specific β2 adrenergic receptor agonist, treatment for an endocrine model. For clenbuterol treatment, we found that Ppargc1a was induced only in low glucose media (1 mg/mL) using a 1-h treatment of 30 ng/mL clenbuterol. Global transcriptional changes of clenbuterol treatment were analyzed by RNA-seq and gene ontology analyses and indicated that mitogenesis and the PI3K-Akt pathway were enhanced, which is consistent with the effects of exercise. Cxcl1 and Cxcl5 were identified as candidate myokines induced by adrenaline. As for the EPS model, we compared 1 Hz of 1-pulse EPS and 1 Hz of 10-pulse EPS for 24 h and determined Myh gene expressions. Ten-pulse EPS induced higher Myh2 and Myh7 expression. Global transcriptional changes of 10-pulse EPS were also analyzed using RNA-seq, and gene ontology analyses indicated that CaMK signaling and hypertrophy pathways were enhanced, which is also consistent with the effects of exercise. In this paper, we provided two transcriptome results of in vitro exercise models and these databases will contribute to advances in exercise research.

2018 ◽  
Vol 314 (5) ◽  
pp. E478-E493 ◽  
Author(s):  
Zhu Li ◽  
Yingying Yue ◽  
Fang Hu ◽  
Chang Zhang ◽  
Xiaofang Ma ◽  
...  

The signals mobilizing GLUT4 to the plasma membrane in response to muscle contraction are less known than those elicited by insulin. This disparity is undoubtedly due to lack of suitable in vitro models to study skeletal muscle contraction. We generated C2C12 myotubes stably expressing HA-tagged GLUT4 (C2C12-GLUT4 HA) that contract in response to electrical pulse stimulation (EPS) and investigated molecular mechanisms regulating GLUT4 HA. EPS (60 min, 20 V, 1 Hz, 24-ms pulses at 976-ms intervals) elicited a gain in surface GLUT4 HA (GLUT4 translocation) comparably to insulin or 5-amino imidazole-4-carboxamide ribonucleotide (AICAR). A myosin II inhibitor prevented EPS-stimulated myotube contraction and reduced surface GLUT4 by 56%. EPS stimulated AMPK and CaMKII phosphorylation, and EPS-stimulated GLUT4 translocation was reduced in part by small interfering (si)RNA-mediated AMPKα1/α2 knockdown, compound C, siRNA-mediated Ca2+/calmodulin-dependent protein kinase (CaMKII)δ knockdown, or CaMKII inhibitor KN93. Key regulatory residues on the Rab-GAPs AS160 and TBC1D1 were phosphorylated in response to EPS. Stable expression of an activated form of the Rab-GAP AS160 (AS160-4A) diminished EPS- and insulin-stimulated GLUT4 translocation, suggesting regulation of GLUT4 vesicle traffic by Rab GTPases. Knockdown of each Rab8a, Rab13, or Rab14 reduced, in part, GLUT4 translocation induced by EPS, whereas only Rab8a, or Rab14 knockdown reduced the AICAR response. In conclusion, EPS involves Rab8a, Rab13, and Rab14 to elicit GLUT4 translocation but not Rab10; moreover, Rab10 and Rab13 are not engaged by AMPK activation alone. C2C12-GLUT4 HA cultures constitute a valuable in vitro model to investigate molecular mechanisms of contraction-stimulated GLUT4 translocation.


FEBS Letters ◽  
2018 ◽  
Vol 592 (4) ◽  
pp. 644-654 ◽  
Author(s):  
Fang Hu ◽  
Nana Li ◽  
Zhu Li ◽  
Chang Zhang ◽  
Yingying Yue ◽  
...  

2017 ◽  
Vol 493 (2) ◽  
pp. 875-878 ◽  
Author(s):  
Kirill Danilov ◽  
Svetlana Sidorenko ◽  
Kseniya Milovanova ◽  
Elizaveta Klimanova ◽  
Leonid V. Kapilevich ◽  
...  

2014 ◽  
Vol 75 ◽  
pp. S29 ◽  
Author(s):  
Ramin Emrani Bidi ◽  
Amelie Rebillard ◽  
Dany Saligaut ◽  
Arlette Delamarche ◽  
Kelvin J.A. Davies ◽  
...  

Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1227
Author(s):  
Eleni Nintou ◽  
Eleni Karligiotou ◽  
Maria Vliora ◽  
Ioannis G. Fatouros ◽  
Athanasios Z. Jamurtas ◽  
...  

The crosstalk between the exercising muscle and the adipose tissue, mediated by myokines and metabolites, derived from both tissues during exercise has created a controversy between animal and human studies with respect to the impact of exercise on the browning process. The aim of this study was to investigate whether co-culturing of C2C12 myotubes and 3T3-L1 adipocytes under the stimuli of electrical pulse stimulation (EPS) mimicking muscle contraction can impact the expression of UCP1, PGC-1a, and IL-6 in adipocytes, therefore providing evidence on the direct crosstalk between adipocytes and stimulated muscle cells. In the co-cultured C2C12 cells, EPS increased the expression of PGC-1a (p = 0.129; d = 0.73) and IL-6 (p = 0.09; d = 1.13) protein levels. When EPS was applied, we found that co-culturing led to increases in UCP1 (p = 0.044; d = 1.29) and IL-6 (p = 0.097; d = 1.13) protein expression in the 3T3-L1 adipocytes. The expression of PGC-1a increased by EPS but was not significantly elevated after co-culturing (p = 0.448; d = 0.08). In vitro co-culturing of C2C12 myotubes and 3T3-L1 adipocytes under the stimuli of EPS leads to increased expression of thermogenic proteins. These findings indicate changes in the expression pattern of proteins related to browning of adipose tissue, supporting the use of this in vitro model to study the crosstalk between adipocytes and contracting muscle.


2018 ◽  
Vol 597 (2) ◽  
pp. 449-466 ◽  
Author(s):  
Sanghee Park ◽  
Kristen D. Turner ◽  
Donghai Zheng ◽  
Jeffrey J. Brault ◽  
Kai Zou ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247377
Author(s):  
Vid Jan ◽  
Katarina Miš ◽  
Natasa Nikolic ◽  
Klemen Dolinar ◽  
Metka Petrič ◽  
...  

Denervation reduces the abundance of Na+,K+-ATPase (NKA) in skeletal muscle, while reinnervation increases it. Primary human skeletal muscle cells, the most widely used model to study human skeletal muscle in vitro, are usually cultured as myoblasts or myotubes without neurons and typically do not contract spontaneously, which might affect their ability to express and regulate NKA. We determined how differentiation, de novo innervation, and electrical pulse stimulation affect expression of NKA (α and β) subunits and NKA regulators FXYD1 (phospholemman) and FXYD5 (dysadherin). Differentiation of myoblasts into myotubes under low serum conditions increased expression of myogenic markers CD56 (NCAM1), desmin, myosin heavy chains, dihydropyridine receptor subunit α1S, and SERCA2 as well as NKAα2 and FXYD1, while it decreased expression of FXYD5 mRNA. Myotubes, which were innervated de novo by motor neurons in co-culture with the embryonic rat spinal cord explants, started to contract spontaneously within 7–10 days. A short-term co-culture (10–11 days) promoted mRNA expression of myokines, such as IL-6, IL-7, IL-8, and IL-15, but did not affect mRNA expression of NKA, FXYDs, or myokines, such as musclin, cathepsin B, meteorin-like protein, or SPARC. A long-term co-culture (21 days) increased the protein abundance of NKAα1, NKAα2, FXYD1, and phospho-FXYD1Ser68 without attendant changes in mRNA levels. Suppression of neuromuscular transmission with α-bungarotoxin or tubocurarine for 24 h did not alter NKA or FXYD mRNA expression. Electrical pulse stimulation (48 h) of non-innervated myotubes promoted mRNA expression of NKAβ2, NKAβ3, FXYD1, and FXYD5. In conclusion, low serum concentration promotes NKAα2 and FXYD1 expression, while de novo innervation is not essential for upregulation of NKAα2 and FXYD1 mRNA in cultured myotubes. Finally, although innervation and EPS both stimulate contractions of myotubes, they exert distinct effects on the expression of NKA and FXYDs.


2020 ◽  
Vol 28 (1) ◽  
pp. 7-11
Author(s):  
Michael J. Eckert ◽  
Kartik Iyer ◽  
David R. Euston ◽  
Masami Tatsuno

Sign in / Sign up

Export Citation Format

Share Document