scholarly journals Indoor Air Quality Campaign in an Occupied Low-Energy House with a High Level of Spatial and Temporal Discretization

2021 ◽  
Vol 11 (24) ◽  
pp. 11789
Author(s):  
Najwa Kanama ◽  
Michel Ondarts ◽  
Gaëlle Guyot ◽  
Jonathan Outin ◽  
Evelyne Gonze

Background and gaps. The topic of indoor air quality (IAQ) in low-energy buildings has received increasing interest over the past few years. Often based on two measurement points and on passive measurements over one week, IAQ studies are struggling to allow the calculation of pollutants exposure. Objectives. We would like to improve the evaluation of the health impacts, through measurements able to estimate the exposure of the occupants. Methodology. This article presents detailed IAQ measurements taken in an energy-efficient occupied house in France. Two campaigns were conducted in winter and spring. Total volatile organic compounds (TVOC), formaldehyde, the particle numbers and PM2.5, carbon dioxide (CO2), relative humidity (RH), temperature (T), ventilation airflows, and weather conditions were dynamically measured in several points. Laboratory and low-cost devices were used, and an inter-comparison was carried out for them. A survey was conducted to record all the daily activities of the inhabitants. IAQ performance indicators based on the different pollutants were calculated. Results. PM2.5 cumulative exposure did not exceed the threshold available in the literature. Formaldehyde concentrations were high, in the kitchen, where the average concentrations exceeded the threshold. However, the formaldehyde cumulative exposure of the occupants did not exceed the threshold. TVOC concentrations were found to reach the threshold. With these measurements performed with high spatial and temporal discretization, we showed that such detailed data allow for a better-quality health impacts assessment and for a better understanding of the transport of pollutants between rooms.

2018 ◽  
Vol 28 (4) ◽  
pp. 506-519 ◽  
Author(s):  
Josefin Persson ◽  
Thanh Wang ◽  
Jessika Hagberg

The use of an airtight frame in low-energy buildings could increase the risk of health-related problems, such as allergies and sick building syndromes (SBS), associated with chemical emissions from building materials, especially if the ventilation system is not functioning properly. In this study, the indoor air quality (IAQ) was investigated in newly built low-energy and conventional preschools by monitoring the indoor air temperature, relative humidity, particle-size distribution and levels of carbon dioxide (CO2), nitrogen dioxide (NO2), formaldehyde and total volatile organic compounds (TVOC). The thermal comfort was satisfactory in all preschools, with average indoor air temperature and a relative humidity at 21.4°C and 36%, respectively. The highest levels of TVOC (range: 130–1650 µg/m3 toluene equivalents) and formaldehyde (range: 1.9–28.8 µg/m3) occurred during the first sampling period associated with strong emissions from building materials. However, those preschools constructed with environmental friendly building materials (such as Swan Eco-label) had lower initial TVOC levels compared to those preschools constructed with conventional building materials. The IAQ and indoor chemical emissions were also strongly dependent on the functioning of the ventilation system. Preliminary risk assessment indicated that exposure to acrolein and crotonaldehyde might lead to respiratory-tract irritation among occupants.


Author(s):  
A. Hernández-Gordillo ◽  
S. Ruiz-Correa ◽  
V. Robledo-Valero ◽  
C. Hernández-Rosales ◽  
S. Arriaga

2018 ◽  
Vol 7 (3.9) ◽  
pp. 42
Author(s):  
Norsafiah Norazman ◽  
Adi Irfan Che Ani ◽  
Nor Haslina Ja’afar ◽  
Muhamad Azry Khoiry

Indoor Air Quality (IAQ) is an essential matter in achieving students’ satisfaction for the learning process. Building’s orientation is a factor that may encourage sufficient natural ventilation for the classroom occupants. Inadequate ventilation is an issue for most existing classrooms. The purpose of this paper is to analyze the accuracy of natural ventilation in classrooms. Therefore, experimental on 20 classrooms has been conducted by using Multipurpose Meter at secondary school buildings in Malaysia. The findings indicated that the accuracy of natural ventilation testing was below the permissible limits throughout the hours monitored, thus this may cause potential health hazards to the students. Temperature and air flow rates were lower than 23 °C and 0.15 m/s respectively, it fulfilled the basic requirements as a standard learning environment. However, measurements taken showed the overall relative humidity (RH) in the classrooms can be categorized as acceptable with 40% to 70% range. On the basis of these findings, it is evident that naturally ventilated classrooms are important especially due to energy efficiency, whereas mechanical ventilation should only be installed as an alternative under extremely hot weather conditions.   


2016 ◽  
Vol 108 ◽  
pp. 63-72 ◽  
Author(s):  
Violeta Kaunelienė ◽  
Tadas Prasauskas ◽  
Edvinas Krugly ◽  
Inga Stasiulaitienė ◽  
Darius Čiužas ◽  
...  

2020 ◽  
Vol 727 ◽  
pp. 138385 ◽  
Author(s):  
H. Chojer ◽  
P.T.B.S. Branco ◽  
F.G. Martins ◽  
M.C.M. Alvim-Ferraz ◽  
S.I.V. Sousa

2015 ◽  
Vol 21 (8) ◽  
pp. 1091-1099 ◽  
Author(s):  
Francisco Javier Rey Martínez ◽  
Manuel Andrés Chicote ◽  
Antonio Villanueva Peñalver ◽  
Ana Tejero Gónzalez ◽  
Eloy Velasco Gómez

Sign in / Sign up

Export Citation Format

Share Document