scholarly journals A Review of the Plantar Pressure Distribution Effects from Insole Materials and at Different Walking Speeds

2021 ◽  
Vol 11 (24) ◽  
pp. 11851
Author(s):  
Fahni Haris ◽  
Ben-Yi Liau ◽  
Yih-Kuen Jan ◽  
Veit Babak Hamun Akbari ◽  
Yanuar Primanda ◽  
...  

Among people with diabetes mellitus (DM), the two common strategies for decreasing peak plantar pressure (PPP) to reduce diabetic foot ulcers (DFUs) risks are to modify walking speeds and to change insole materials. This study reviewed the PPP reduction based on various walking speeds and insole materials. The articles were retrieved from four major scientific databases and manual search. We identified 1585 articles, of which 27 articles were selected for full-text analysis. We found that in faster walking speeds, the forefoot PPP was higher (308 kPa) than midfoot (150 kPa) and rearfoot (251 kPa) PPP. The appropriate walking speed for reducing the forefoot PPP was about 6 km/h for non-DM and 4 km/h for DM people. The forefoot PPP in DM people was 185% higher than that of non-DM people. Ethylene–vinyl acetate (EVA) insole material was the most popular material used by experts (26%) in the forefoot and reduced 37% of PPP. In conclusion, the suitable walking speed for DM was slower than for non-DM people, and EVA was the most common insole material used to decrease the PPP under the forefoot. The clinicians might recommend DM people to walk at 4 km/h and wear EVA insole material to minimize the DFUs.

2003 ◽  
Vol 24 (4) ◽  
pp. 349-353 ◽  
Author(s):  
René E. Weijers ◽  
Geert H.I.M. Walenkamp ◽  
Henk van Mameren ◽  
Alphons G.H. Kessels

We test the premise that peak plantar pressure is located directly under the bony prominences in the forefoot region. The right foot of standing volunteers was examined in three different postures by a CT-scanner. The plantar pressure distribution was simultaneously recorded. The position of the metatarsal heads and the sesamoids could be related to the corresponding local peak plantar pressures. The metatarsal heads 1, 4, and 5 had a significantly different position than the local peak plantar pressures. The average difference in distance between the position of the metatarsal heads and the peak plantar pressure showed a significant correlation: on the medial side the head was located more distally to the local peak plantar pressure, on the lateral side more proximally. The findings suggest that normal plantar soft tissue is able to deflect a load. The observations might improve insight into the function of the normal forefoot and might direct further research on the pathological forefoot and on the design of footwear.


1996 ◽  
Vol 17 (1) ◽  
pp. 43-48 ◽  
Author(s):  
Juan Carlos Garbalosa ◽  
Peter R. Cavanagh ◽  
Ge Wu ◽  
Jan S. Ulbrecht ◽  
Mary B. Becker ◽  
...  

The function of partially amputated feet in 10 patients with diabetes mellitus was studied. First-step bilateral barefoot plantar pressure distribution and three-dimensional kinematic data were collected using a Novel EMED platform and three video cameras. Analysis of the plantar pressure data revealed a significantly greater mean peak plantar pressure in the feet with transmetatarsal amputation (TMA) than in the intact feet of the same patients. The heels of the amputated feet had significantly lower mean peak plantar pressures than all the forefoot regions. A significantly greater maximum dynamic dorsiflexion range of motion was seen in the intact compared with the TMA feet. However, no difference was noted in the static dorsiflexion range of motion between the two feet and there was, therefore, a trend for the TMA feet to use less of the available range of motion. Given the altered kinematics and elevated plantar pressures noted in this study, careful postsurgical footwear management of feet with TMA would appear to be essential if ulceration is to be prevented.


2017 ◽  
Vol 33 (5) ◽  
pp. 323-329 ◽  
Author(s):  
Silvia Gonçalves Ricci Neri ◽  
André Bonadias Gadelha ◽  
Ana Luiza Matias Correia ◽  
Juscélia Cristina Pereira ◽  
Ana Cristina de David ◽  
...  

Increased plantar pressure has been found to be related with greater risk of falling. Although there is evidence suggesting that obesity is linked to foot disorders, the association between obesity and plantar pressure of older adults has been poorly investigated. The purpose of this study was to examine the association between obesity and plantar pressure distribution and to explore its relationship with body fat distribution. Two hundred and eleven older women took part in this cross-sectional study. Body mass index was taken for obesity classification. Whole body, android, and gynoid fat percentage was assessed using dual-energy x-ray absorptiometry. Peak plantar pressure was evaluated during gait using an Emed AT-4 pressure platform. Obese volunteers generated greater peak pressure at midfoot (187.26 kPa) compared to both normal weight (128.52 kPa, p < .001) and overweight (165.74 kPa, p < .001). Peak plantar pressure at midfoot was also greater in overweight compared to normal weight (p < .001). At forefoot, peak pressure was higher in the obese (498.15 kPa) compared to normal weight volunteers (420.41 kPa, p = .007). Additionally, whole body, android, and gynoid fat percentage were significantly associated with peak pressure at midfoot and forefoot. Therefore, clinicians dealing with falls should consider the effect of increased body weight on plantar pressure.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2261
Author(s):  
Mariyam J. Ghazali ◽  
Xu Ren ◽  
Armin Rajabi ◽  
Wan Fathul Hakim W. Zamri ◽  
Nadia Mohd Mustafah ◽  
...  

With the development of societies, diabetic foot ulcers have become one of the most common diseases requiring lower extremity amputation. The early treatment and prevention of diabetic foot ulcers can considerably reduce the possibility of amputation. Using footwear to redistribute and relieve plantar pressure is one of the important measures for the treatment and prevention of diabetic foot ulcers. Thus, the evaluation and prediction of the distribution of plantar pressure play an important role in designing footwears. Herein, the finite element method was used to study plantar pressure under two kinds of foot models, namely, the skeletal structure foot model and the whole foot model, to explore the influence of human bones on the pressure of the soles of the feet and obtain accurate foot pressure. Simulation results showed that under the two models, the plantar pressure and the pressure from the footwear with ethylene vinyl acetate were all reduced. The total deformation demonstrated a slight increase. These stresses are very useful as they enable the design of suitable orthotic footwear that reduces the amount of stress in individuals with diabetic foot ulcers.


2004 ◽  
Vol 25 (12) ◽  
pp. 926-933 ◽  
Author(s):  
Ava Segal ◽  
Eric Rohr ◽  
Michael Orendurff ◽  
Jane Shofer ◽  
Matthew O'Brien ◽  
...  

2004 ◽  
Vol 94 (3) ◽  
pp. 255-260 ◽  
Author(s):  
Simon J. Otter ◽  
Catherine Jane Bowen ◽  
Adam K. Young

We sought to investigate the magnitude and duration of peak forefoot plantar pressures in rheumatoid arthritis. The spatial and temporal characteristics of forefoot plantar pressures were measured in 25 patients with a positive diagnosis of rheumatoid arthritis of 5 to 10 years’ duration (mean, 8 years) and a comparison group using a platform-based pressure-measurement system. There were no significant differences between groups in the magnitude of peak plantar pressure in the forefoot region. Significant differences were, however, noted for temporal aspects of foot-pressure measurement. The duration of loading over sensors detecting peak plantar pressure was significantly longer in the rheumatoid arthritis group. In addition, the rheumatoid arthritis group demonstrated significantly greater force–time integrals. Significant increases in the temporal parameters of plantar pressure distribution, rather than those of amplitude, may be characteristic of the rheumatoid foot. (J Am Podiatr Med Assoc 94(3): 255–260, 2004)


Sign in / Sign up

Export Citation Format

Share Document