scholarly journals Extracting Weld Bead Shapes from Radiographic Testing Images with U-Net

2021 ◽  
Vol 11 (24) ◽  
pp. 12051
Author(s):  
Gang-soo Jin ◽  
Sang-jin Oh ◽  
Yeon-seung Lee ◽  
Sung-chul Shin

Metals created by melting basic metal and welding rods in welding operations are referred to as weld beads. The weld bead shape allows the observation of pores and defects such as cracks in the weld zone. Radiographic testing images are used to determine the quality of the weld zone. The extraction of only the weld bead to determine the generative pattern of the bead can help efficiently locate defects in the weld zone. However, manual extraction of the weld bead from weld images is not time and cost-effective. Efficient and rapid welding quality inspection can be conducted by automating weld bead extraction through deep learning. As a result, objectivity can be secured in the quality inspection and determination of the weld zone in the shipbuilding and offshore plant industry. This study presents a method for detecting the weld bead shape and location from the weld zone image using image preprocessing and deep learning models, and extracting the weld bead through image post-processing. In addition, to diversify the data and improve the deep learning performance, data augmentation was performed to artificially expand the image data. Contrast limited adaptive histogram equalization (CLAHE) is used as an image preprocessing method, and the bead is extracted using U-Net, a pixel-based deep learning model. Consequently, the mean intersection over union (mIoU) values are found to be 90.58% and 85.44% in the train and test experiments, respectively. Successful extraction of the bead from the radiographic testing image through post-processing is achieved.

Diagnostics ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 261
Author(s):  
Tae-Young Heo ◽  
Kyoung Min Kim ◽  
Hyun Kyu Min ◽  
Sun Mi Gu ◽  
Jae Hyun Kim ◽  
...  

The use of deep-learning-based artificial intelligence (AI) is emerging in ophthalmology, with AI-mediated differential diagnosis of neovascular age-related macular degeneration (AMD) and dry AMD a promising methodology for precise treatment strategies and prognosis. Here, we developed deep learning algorithms and predicted diseases using 399 images of fundus. Based on feature extraction and classification with fully connected layers, we applied the Visual Geometry Group with 16 layers (VGG16) model of convolutional neural networks to classify new images. Image-data augmentation in our model was performed using Keras ImageDataGenerator, and the leave-one-out procedure was used for model cross-validation. The prediction and validation results obtained using the AI AMD diagnosis model showed relevant performance and suitability as well as better diagnostic accuracy than manual review by first-year residents. These results suggest the efficacy of this tool for early differential diagnosis of AMD in situations involving shortages of ophthalmology specialists and other medical devices.


2021 ◽  
Vol 11 (9) ◽  
pp. 842
Author(s):  
Shruti Atul Mali ◽  
Abdalla Ibrahim ◽  
Henry C. Woodruff ◽  
Vincent Andrearczyk ◽  
Henning Müller ◽  
...  

Radiomics converts medical images into mineable data via a high-throughput extraction of quantitative features used for clinical decision support. However, these radiomic features are susceptible to variation across scanners, acquisition protocols, and reconstruction settings. Various investigations have assessed the reproducibility and validation of radiomic features across these discrepancies. In this narrative review, we combine systematic keyword searches with prior domain knowledge to discuss various harmonization solutions to make the radiomic features more reproducible across various scanners and protocol settings. Different harmonization solutions are discussed and divided into two main categories: image domain and feature domain. The image domain category comprises methods such as the standardization of image acquisition, post-processing of raw sensor-level image data, data augmentation techniques, and style transfer. The feature domain category consists of methods such as the identification of reproducible features and normalization techniques such as statistical normalization, intensity harmonization, ComBat and its derivatives, and normalization using deep learning. We also reflect upon the importance of deep learning solutions for addressing variability across multi-centric radiomic studies especially using generative adversarial networks (GANs), neural style transfer (NST) techniques, or a combination of both. We cover a broader range of methods especially GANs and NST methods in more detail than previous reviews.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Connor Shorten ◽  
Taghi M. Khoshgoftaar

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Olarik Surinta ◽  
Narong Boonsirisumpun

Vehicle Type Recognition has a significant problem that happens when people need to search for vehicle data from a video surveillance system at a time when a license plate does not appear in the image. This paper proposes to solve this problem with a deep learning technique called Convolutional Neural Network (CNN), which is one of the latest advanced machine learning techniques. In the experiments, researchers collected two datasets of Vehicle Type Image Data (VTID I & II), which contained 1,310 and 4,356 images, respectively. The first experiment was performed with 5 CNN architectures (MobileNets, VGG16, VGG19, Inception V3, and Inception V4), and the second experiment with another 5 CNNs (MobileNetV2, ResNet50, Inception ResNet V2, Darknet-19, and Darknet-53) including several data augmentation methods. The results showed that MobileNets, when combine with the brightness augmented method, significantly outperformed other CNN architectures, producing the highest accuracy rate at 95.46%. It was also the fastest model when compared to other CNN networks.


2020 ◽  
Vol 12 (22) ◽  
pp. 3715 ◽  
Author(s):  
Minsoo Park ◽  
Dai Quoc Tran ◽  
Daekyo Jung ◽  
Seunghee Park

To minimize the damage caused by wildfires, a deep learning-based wildfire-detection technology that extracts features and patterns from surveillance camera images was developed. However, many studies related to wildfire-image classification based on deep learning have highlighted the problem of data imbalance between wildfire-image data and forest-image data. This data imbalance causes model performance degradation. In this study, wildfire images were generated using a cycle-consistent generative adversarial network (CycleGAN) to eliminate data imbalances. In addition, a densely-connected-convolutional-networks-based (DenseNet-based) framework was proposed and its performance was compared with pre-trained models. While training with a train set containing an image generated by a GAN in the proposed DenseNet-based model, the best performance result value was realized among the models with an accuracy of 98.27% and an F1 score of 98.16, obtained using the test dataset. Finally, this trained model was applied to high-quality drone images of wildfires. The experimental results showed that the proposed framework demonstrated high wildfire-detection accuracy.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yunong Tian ◽  
Guodong Yang ◽  
Zhe Wang ◽  
En Li ◽  
Zize Liang

Plant disease is one of the primary causes of crop yield reduction. With the development of computer vision and deep learning technology, autonomous detection of plant surface lesion images collected by optical sensors has become an important research direction for timely crop disease diagnosis. In this paper, an anthracnose lesion detection method based on deep learning is proposed. Firstly, for the problem of insufficient image data caused by the random occurrence of apple diseases, in addition to traditional image augmentation techniques, Cycle-Consistent Adversarial Network (CycleGAN) deep learning model is used in this paper to accomplish data augmentation. These methods effectively enrich the diversity of training data and provide a solid foundation for training the detection model. In this paper, on the basis of image data augmentation, densely connected neural network (DenseNet) is utilized to optimize feature layers of the YOLO-V3 model which have lower resolution. DenseNet greatly improves the utilization of features in the neural network and enhances the detection result of the YOLO-V3 model. It is verified in experiments that the improved model exceeds Faster R-CNN with VGG16 NET, the original YOLO-V3 model, and other three state-of-the-art networks in detection performance, and it can realize real-time detection. The proposed method can be well applied to the detection of anthracnose lesions on apple surfaces in orchards.


2020 ◽  
Vol 10 (18) ◽  
pp. 6502
Author(s):  
Shinjin Kang ◽  
Jong-in Choi

On the game screen, the UI interface provides key information for game play. A vision deep learning network exploits pure pixel information in the screen. Apart from this, if we separately extract the information provided by the UI interface and use it as an additional input value, we can enhance the learning efficiency of deep learning networks. To this end, by effectively segmenting UI interface components such as buttons, image icons, and gauge bars on the game screen, we should be able to separately analyze only the relevant images. In this paper, we propose a methodology that segments UI components in a game by using synthetic game images created on a game engine. We developed a tool that approximately detected the UI areas of an image in games on the game screen and generated a large amount of synthetic labeling data through this. By training this data on a Pix2Pix, we applied UI segmentation. The network trained in this way can segment the UI areas of the target game regardless of the position of the corresponding UI components. Our methodology can help analyze the game screen without applying data augmentation to the game screen. It can also help vision researchers who should extract semantic information from game image data.


2021 ◽  
Author(s):  
Adam G Berman ◽  
William R Orchard ◽  
Marcel Gehrung ◽  
Florian Markowetz

The inspection of stained tissue slides by pathologists is essential for the early detection, diagnosis and monitoring of disease. Recently, deep learning methods for the analysis of whole-slide images (WSIs) have shown excellent performance on these tasks, and have the potential to substantially reduce the workload of pathologists. However, successful implementation of deep learning for WSI analysis is complex and requires careful consideration of model hyperparameters, slide and image artefacts, and data augmentation. Here we introduce PathML, a Python library for performing pre- and post-processing of WSIs, which has been designed to interact with the most widely used deep learning libraries, PyTorch and TensorFlow, thus allowing seamless integration into deep learning workflows. We present the current best practices in deep learning for WSI analysis, and give a step-by-step guide using the PathML framework: from annotating and pre-processing of slides, to implementing neural network architectures, to training and post-processing. PathML provides a unified framework in which deep learning methods for WSI analysis can be developed and applied, thus increasing the accessibility of an important new application of deep learning.


Sign in / Sign up

Export Citation Format

Share Document