scholarly journals Detecting Small Anatomical Structures in 3D Knee MRI Segmentation by Fully Convolutional Networks

2021 ◽  
Vol 12 (1) ◽  
pp. 283
Author(s):  
Mengtao Sun ◽  
Li Lu ◽  
Ibrahim A. Hameed ◽  
Carl Petter Skaar Kulseng ◽  
Kjell-Inge Gjesdal

Accurately identifying the pixels of small organs or lesions from magnetic resonance imaging (MRI) has a critical impact on clinical diagnosis. U-net is the most well-known and commonly used neural network for image segmentation. However, the small anatomical structures in medical images cannot be well recognised by U-net. This paper explores the performance of the U-net architectures in knee MRI segmentation to find a relative structure that can obtain high accuracies for both small and large anatomical structures. To maximise the utilities of U-net architecture, we apply three types of components, residual blocks, squeeze-and-excitation (SE) blocks, and dense blocks, to construct four variants of U-net, namely U-net variants. Among these variants, our experiments show that SE blocks can improve the segmentation accuracies of small labels. We adopt DeepLabv3plus architecture for 3D medical image segmentation by equipping SE blocks based on this discovery. The experimental results show that U-net with SE block achieves higher accuracy in parts of small anatomical structures. In contrast, DeepLabv3plus with SE block performs better on the average dice coefficient of small and large labels.

2017 ◽  
Vol 33 (6-8) ◽  
pp. 1061-1071 ◽  
Author(s):  
Lei Bi ◽  
Jinman Kim ◽  
Ashnil Kumar ◽  
Michael Fulham ◽  
Dagan Feng

2018 ◽  
Vol 66 ◽  
pp. 90-99 ◽  
Author(s):  
Holger R. Roth ◽  
Hirohisa Oda ◽  
Xiangrong Zhou ◽  
Natsuki Shimizu ◽  
Ying Yang ◽  
...  

Author(s):  
Maria Papadogiorgaki ◽  
Vasileios Mezaris ◽  
Yiannis Chatzizisis

Images have constituted an essential data source in medicine in the last decades. Medical images derived from diagnostic technologies (e.g., X-ray, ultrasound, computed tomography, magnetic resonance, nuclear imaging) are used to improve the existing diagnostic systems for clinical purposes, but also to facilitate medical research. Hence, medical image processing techniques are constantly investigated and evolved. Medical image segmentation is the primary stage to the visualization and clinical analysis of human tissues. It refers to the segmentation of known anatomic structures from medical images. Structures of interest include organs or parts thereof, such as cardiac ventricles or kidneys, abnormalities such as tumors and cysts, as well as other structures such as bones, vessels, brain structures and so forth. The overall objective of such methods is referred to as computer-aided diagnosis; in other words, they are used for assisting doctors in evaluating medical imagery or in recognizing abnormal findings in a medical image. In contrast to generic segmentation methods, techniques used for medical image segmentation are often applicationspecific; as such, they can make use of prior knowledge for the particular objects of interest and other expected or possible structures in the image. This has led to the development of a wide range of segmentation methods addressing specific problems in medical applications. In the sequel of this article, the analysis of medical visual information generated by three different medical imaging processes will be discussed in detail: Magnetic Resonance Imaging (MRI), Mammography, and Intravascular Ultrasound (IVUS). Clearly, in addition to the aforementioned imaging processes and the techniques for their analysis that are discussed in the sequel, numerous other algorithms for applications of segmentation to specialized medical imagery interpretation exist.


Author(s):  
MANOJ KUMAR V ◽  
SUMITHRA M G

Image segmentation plays a crucial role in many medical-imaging applications, by automating or facilitating the delineation of anatomical structures and other regions of interest. In this paper explaining current segmentation approaches in medical image segmentation and then reviewed with an emphasis on the advantages and disadvantages of these methods and showing the implemented outcomes of the thresholding, clustering,


2011 ◽  
pp. 359-367
Author(s):  
Maria Papadogiorgaki ◽  
Vasileios Mezaris ◽  
Yiannis Chatzizisis

Images have constituted an essential data source in medicine in the last decades. Medical images derived from diagnostic technologies (e.g., X-ray, ultrasound, computed tomography, magnetic resonance, nuclear imaging) are used to improve the existing diagnostic systems for clinical purposes, but also to facilitate medical research. Hence, medical image processing techniques are constantly investigated and evolved. Medical image segmentation is the primary stage to the visualization and clinical analysis of human tissues. It refers to the segmentation of known anatomic structures from medical images. Structures of interest include organs or parts thereof, such as cardiac ventricles or kidneys, abnormalities such as tumors and cysts, as well as other structures such as bones, vessels, brain structures and so forth. The overall objective of such methods is referred to as computer-aided diagnosis; in other words, they are used for assisting doctors in evaluating medical imagery or in recognizing abnormal findings in a medical image. In contrast to generic segmentation methods, techniques used for medical image segmentation are often applicationspecific; as such, they can make use of prior knowledge for the particular objects of interest and other expected or possible structures in the image. This has led to the development of a wide range of segmentation methods addressing specific problems in medical applications. In the sequel of this article, the analysis of medical visual information generated by three different medical imaging processes will be discussed in detail: Magnetic Resonance Imaging (MRI), Mammography, and Intravascular Ultrasound (IVUS). Clearly, in addition to the aforementioned imaging processes and the techniques for their analysis that are discussed in the sequel, numerous other algorithms for applications of segmentation to specialized medical imagery interpretation exist.


2019 ◽  
Author(s):  
Ali Hatamizadeh ◽  
Demetri Terzopoulos ◽  
Andriy Myronenko

AbstractFully convolutional neural networks (CNNs) have proven to be effective at representing and classifying textural information, thus transforming image intensity into output class masks that achieve semantic image segmentation. In medical image analysis, however, expert manual segmentation often relies on the boundaries of anatomical structures of interest. We propose boundary aware CNNs for medical image segmentation. Our networks are designed to account for organ boundary information, both by providing a special network edge branch and edge-aware loss terms, and they are trainable end-to-end. We validate their effectiveness on the task of brain tumor segmentation using the BraTS 2018 dataset. Our experiments reveal that our approach yields more accurate segmentation results, which makes it promising for more extensive application to medical image segmentation.


2019 ◽  
Vol 31 (6) ◽  
pp. 1007 ◽  
Author(s):  
Haiou Wang ◽  
Hui Liu ◽  
Qiang Guo ◽  
Kai Deng ◽  
Caiming Zhang

Sign in / Sign up

Export Citation Format

Share Document