scholarly journals Optical Comparison Operation for 8-Bit QPSK-Modulated Signal by Using Serially-Cascaded Delay Line Interferometer

2018 ◽  
Vol 8 (9) ◽  
pp. 1440 ◽  
Author(s):  
Yohei Aikawa

An all-optical comparator is desirable to realize large-capacity, fully-transparent, and energy-efficient communication systems, as it is considered to be a fundamental component to perform most of the operations, including packet switching, label recognition, error detection and correction, and so on. However, most of the previous studies have been confined to the on–off keying (OOK) modulation format, not phase-shift keying (PSK) modulation. In this paper, the author provides a novel optical comparator designed for quadrature PSK (QPSK)-modulated signal, which comprises a code word with 8-bit length, using a serially-cascaded delay line interferometer. The proposed comparator yields constellations having the information of a Hamming distance based on the designed code, when several patterns of QPSK signal are injected into the comparator. The paper experimentally demonstrates the feasibility of the optical comparison operation for 8-bit QPSK-modulated return-to-zero (RZ) signal at 10 Gbaud.

Author(s):  
Wael Toghuj ◽  
Ghazi I. Alkhatib

Digital communication systems are an important part of modern society, and they rely on computers and networks to achieve critical tasks. Critical tasks require systems with a high level of reliability that can provide continuous correct operations. This paper presents a new algorithm for data encoding and decoding using a two-dimensional code that can be implemented in digital communication systems, electronic memories (DRAMs and SRAMs), and web engineering. The developed algorithms correct three errors in codeword and detect four, reaching an acceptable performance level. The program that is based on these algorithms enables the modeling of error detection and correction processes, optimizes the redundancy of the code, monitors the decoding procedures, and defines the speed of execution. The performance of the derived code improves error detection and correction over the classical code and with less complexity. Several extensible applications of the algorithms are also given.


Author(s):  
Wael Toghuj ◽  
Ghazi I. Alkhatib

Digital communication systems are an important part of modern society, and they rely on computers and networks to achieve critical tasks. Critical tasks require systems with a high level of reliability that can provide continuous correct operations. This paper presents a new algorithm for data encoding and decoding using a two-dimensional code that can be implemented in digital communication systems, electronic memories (DRAMs and SRAMs), and web engineering. The developed algorithms correct three errors in codeword and detect four, reaching an acceptable performance level. The program that is based on these algorithms enables the modeling of error detection and correction processes, optimizes the redundancy of the code, monitors the decoding procedures, and defines the speed of execution. The performance of the derived code improves error detection and correction over the classical code and with less complexity. Several extensible applications of the algorithms are also given.


2013 ◽  
Vol 10 (1) ◽  
pp. 1249-1254
Author(s):  
Sagar Chouksey ◽  
Mayur Ghadle ◽  
Abdul Rasheed ◽  
Shaikh Khursheed Mohd Murtaza

In wireless communication systems reducing bit/frame/symbol error rate is critical. If bit error rates are high then in wireless communication system our aim is to minimize error by employing various coding methods on the data transferred. Various channel coding for error detection and correction helps the communication system designers to reduce the effects of a noisy data transmission channel. In this paper our focus is to study and analysis of the performance of Reed-Solomon code that is used to encode the data stream in digital communication. The performances were evaluated by applying to different phase sift keying (PSK) modulation scheme in Noisy channel. Reed-Solomon codes are one of the best for correcting burst errors and find wide range of applications in digital communications and data storage. Reed-Solomon codes are good coding technique for error correcting, in which redundant information is added to data so that it can be recovered reliably despite errors in transmission or retrieval. The error correction system used is based on a Reed-Solomon code. These codes are also used on satellite and other communications systems. 


Sign in / Sign up

Export Citation Format

Share Document