scholarly journals Fully Convolutional Neural Network with Augmented Atrous Spatial Pyramid Pool and Fully Connected Fusion Path for High Resolution Remote Sensing Image Segmentation

2019 ◽  
Vol 9 (9) ◽  
pp. 1816 ◽  
Author(s):  
Guangsheng Chen ◽  
Chao Li ◽  
Wei Wei ◽  
Weipeng Jing ◽  
Marcin Woźniak ◽  
...  

Recent developments in Convolutional Neural Networks (CNNs) have allowed for the achievement of solid advances in semantic segmentation of high-resolution remote sensing (HRRS) images. Nevertheless, the problems of poor classification of small objects and unclear boundaries caused by the characteristics of the HRRS image data have not been fully considered by previous works. To tackle these challenging problems, we propose an improved semantic segmentation neural network, which adopts dilated convolution, a fully connected (FC) fusion path and pre-trained encoder for the semantic segmentation task of HRRS imagery. The network is built with the computationally-efficient DeepLabv3 architecture, with added Augmented Atrous Spatial Pyramid Pool and FC Fusion Path layers. Dilated convolution enlarges the receptive field of feature points without decreasing the feature map resolution. The improved neural network architecture enhances HRRS image segmentation, reaching the classification accuracy of 91%, and the precision of recognition of small objects is improved. The applicability of the improved model to the remote sensing image segmentation task is verified.

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3232 ◽  
Author(s):  
Yan Liu ◽  
Qirui Ren ◽  
Jiahui Geng ◽  
Meng Ding ◽  
Jiangyun Li

Efficient and accurate semantic segmentation is the key technique for automatic remote sensing image analysis. While there have been many segmentation methods based on traditional hand-craft feature extractors, it is still challenging to process high-resolution and large-scale remote sensing images. In this work, a novel patch-wise semantic segmentation method with a new training strategy based on fully convolutional networks is presented to segment common land resources. First, to handle the high-resolution image, the images are split as local patches and then a patch-wise network is built. Second, training data is preprocessed in several ways to meet the specific characteristics of remote sensing images, i.e., color imbalance, object rotation variations and lens distortion. Third, a multi-scale training strategy is developed to solve the severe scale variation problem. In addition, the impact of conditional random field (CRF) is studied to improve the precision. The proposed method was evaluated on a dataset collected from a capital city in West China with the Gaofen-2 satellite. The dataset contains ten common land resources (Grassland, Road, etc.). The experimental results show that the proposed algorithm achieves 54.96% in terms of mean intersection over union (MIoU) and outperforms other state-of-the-art methods in remote sensing image segmentation.


Author(s):  
Y. Yang ◽  
H. T. Li ◽  
Y. S. Han ◽  
H. Y. Gu

Image segmentation is the foundation of further object-oriented image analysis, understanding and recognition. It is one of the key technologies in high resolution remote sensing applications. In this paper, a new fast image segmentation algorithm for high resolution remote sensing imagery is proposed, which is based on graph theory and fractal net evolution approach (FNEA). Firstly, an image is modelled as a weighted undirected graph, where nodes correspond to pixels, and edges connect adjacent pixels. An initial object layer can be obtained efficiently from graph-based segmentation, which runs in time nearly linear in the number of image pixels. Then FNEA starts with the initial object layer and a pairwise merge of its neighbour object with the aim to minimize the resulting summed heterogeneity. Furthermore, according to the character of different features in high resolution remote sensing image, three different merging criterions for image objects based on spectral and spatial information are adopted. Finally, compared with the commercial remote sensing software eCognition, the experimental results demonstrate that the efficiency of the algorithm has significantly improved, and the result can maintain good feature boundaries.


Author(s):  
Chenming Li ◽  
Xiaoyu Qu ◽  
Yao Yang ◽  
Hongmin Gao ◽  
Yongchang Wang ◽  
...  

2019 ◽  
Vol 39 (12) ◽  
pp. 1210001 ◽  
Author(s):  
王恩德 Wang Ende ◽  
齐凯 Qi Kai ◽  
李学鹏 Li Xuepeng ◽  
彭良玉 Peng Liangyu

Author(s):  
Jingtan Li ◽  
Maolin Xu ◽  
Hongling Xiu

With the resolution of remote sensing images is getting higher and higher, high-resolution remote sensing images are widely used in many areas. Among them, image information extraction is one of the basic applications of remote sensing images. In the face of massive high-resolution remote sensing image data, the traditional method of target recognition is difficult to cope with. Therefore, this paper proposes a remote sensing image extraction based on U-net network. Firstly, the U-net semantic segmentation network is used to train the training set, and the validation set is used to verify the training set at the same time, and finally the test set is used for testing. The experimental results show that U-net can be applied to the extraction of buildings.


Sign in / Sign up

Export Citation Format

Share Document