scholarly journals Endophytic Colonization of Pepper (Capsicum annum) Controls Aphids (Myzus persicae Sulzer)

2019 ◽  
Vol 9 (11) ◽  
pp. 2239 ◽  
Author(s):  
Spiridon Mantzoukas ◽  
Ioannis Lagogiannis

Aphids are among the most harmful crop pests, damaging plants by sucking sap or by transmitting pathogenic viruses. Plant infestation by aphids depends on their population growth. Entomopathogenic fungi are essential participants of terrestrial and aquatic ecosystems, regulating arthropod communities. Many fungal species with a symbiotic–endophytic relation with plants are pathogenic, producing insecticides or insect repellents. The present study investigated the effects of the fungal entomopathogens Beauveria bassiana, Metarhizium anisopliae and Isaria fumosorosea, following their endophytic colonization of the sweet pepper Capsicum annum, on the development of the green peach aphid Myzus persicae. After 21 days, B. bassiana produced 100% aphid mortality, M. anisopliae 90% and I. fumosorosea 83.3%. There were also significant differences in terms of the effect on aphid population in planta and on the survival time of young adults in planta. External mycelium appeared within 96 h after placing aphid cadavers on damp filter paper. PCR confirmed that the mycelium was of B. bassiana, M. anisopliae and I. fumosorosea. DNA sequences collected from this work were matched with existing sequences data in GenBank, using the Basic Local Alignment Search Tool. Our results showed that none of the three fungal isolates had an effect in promoting or suppressing the growth of C. annum.

2018 ◽  
Vol 166 (6) ◽  
pp. 491-499 ◽  
Author(s):  
Aleixandre Beltrà ◽  
Felix L. Wäckers ◽  
Oldřich Nedvěd ◽  
Apostolos Pekas

2014 ◽  
Vol 27 (1) ◽  
pp. 30-39 ◽  
Author(s):  
Patricia A. Rodriguez ◽  
Remco Stam ◽  
Tim Warbroek ◽  
Jorunn I. B. Bos

Aphids are phloem-feeding insects that, like other plant parasites, deliver effectors inside their host to manipulate host responses. The Myzus persicae (green peach aphid) candidate effectors Mp10 and Mp42 were previously found to reduce aphid fecundity upon intracellular transient overexpression in Nicotiana benthamiana. We performed functional analyses of these proteins to investigate whether they activate defenses through similar activities. We employed a range of functional characterization experiments based on intracellular transient overexpression in N. benthamiana to determine the subcellular localization of Mp10 and Mp42 and investigate their role in activating plant defense signaling. Mp10 and Mp42 showed distinct subcellular localization in planta, suggesting that they target different host compartments. Also, Mp10 reduced the levels of Agrobacterium-mediated overexpression of proteins. This reduction was not due to an effect on Agrobacterium viability. Transient overexpression of Mp10 but not Mp42 activated jasmonic acid and salicylic acid signaling pathways and decreased susceptibility to the hemibiotrophic plant pathogen Phytophthora capsici. We found that two candidate effectors from the broad-host-range aphid M. persicae can trigger aphid defenses through different mechanisms. Importantly, we found that some (candidate) effectors such as Mp10 interfere with Agrobacterium-based overexpression assays, an important tool to study effector activity and function.


Genome ◽  
2008 ◽  
Vol 51 (7) ◽  
pp. 501-510 ◽  
Author(s):  
Yong-Lei Zhang ◽  
Zheng-Xi Li

Farnesyl diphosphate synthase (FPS; EC 2.5.1.1, 2.5.1.10) catalyzes biosynthesis of farnesyl diphosphate, which is important to insects as the precursor of juvenile hormone and the substrate for (E)-β-farnesene synthase. Here, two FPS cDNAs were isolated from the green peach aphid, Myzus persicae (EU334430 and EU334431). Their shared identity within the coding region is ~82%. The deduced amino acid sequences of the two M. persicae FPS cDNAs have the highly conserved motifs characteristic of most known FPSs. Phylogenetic analyses showed that they are closely related to other insect FPSs. Homology modeling of structures suggested a very good fit between the three-dimensional structures of the two putative M. persicae FPSs (designated as MpFPS1 and MpFPS2) and the avian FPS crystal structure. The corresponding genomic DNA sequences were subsequently determined (EU429295 and EU429296). Sequence comparisons revealed a different splicing pattern between the two MpFPS genes. Furthermore, the two MpFPS genes exhibited a seemingly very primitive gene-splicing pattern at 5′ ends but a gene-splicing style similar to mammalian FPS genes at 3′ ends. These data, combined with results of Southern blotting, suggest that M. persicae contains two different FPS genes. This is the first report that two different FPS genes exist in a hemipteran insect.


Author(s):  
R.A. Bagrov ◽  
◽  
V.I. Leunov

The mechanisms of transmission of potato viruses from plants to aphid vectors and from aphids to uninfected plants are described, including the example of the green peach aphid (Myzus persicae, GPA). Factors affecting the spreading of tuber necrosis and its manifestation on plants infected with potato leafroll virus (PLRV) are discussed. Recommendations for PLRV and GPA control in the field are given.


Sign in / Sign up

Export Citation Format

Share Document