scholarly journals Mp10 and Mp42 from the Aphid Species Myzus persicae Trigger Plant Defenses in Nicotiana benthamiana Through Different Activities

2014 ◽  
Vol 27 (1) ◽  
pp. 30-39 ◽  
Author(s):  
Patricia A. Rodriguez ◽  
Remco Stam ◽  
Tim Warbroek ◽  
Jorunn I. B. Bos

Aphids are phloem-feeding insects that, like other plant parasites, deliver effectors inside their host to manipulate host responses. The Myzus persicae (green peach aphid) candidate effectors Mp10 and Mp42 were previously found to reduce aphid fecundity upon intracellular transient overexpression in Nicotiana benthamiana. We performed functional analyses of these proteins to investigate whether they activate defenses through similar activities. We employed a range of functional characterization experiments based on intracellular transient overexpression in N. benthamiana to determine the subcellular localization of Mp10 and Mp42 and investigate their role in activating plant defense signaling. Mp10 and Mp42 showed distinct subcellular localization in planta, suggesting that they target different host compartments. Also, Mp10 reduced the levels of Agrobacterium-mediated overexpression of proteins. This reduction was not due to an effect on Agrobacterium viability. Transient overexpression of Mp10 but not Mp42 activated jasmonic acid and salicylic acid signaling pathways and decreased susceptibility to the hemibiotrophic plant pathogen Phytophthora capsici. We found that two candidate effectors from the broad-host-range aphid M. persicae can trigger aphid defenses through different mechanisms. Importantly, we found that some (candidate) effectors such as Mp10 interfere with Agrobacterium-based overexpression assays, an important tool to study effector activity and function.

2020 ◽  
Vol 13 ◽  
pp. 110-114
Author(s):  
Andrei Chiriloaie-Palade ◽  
Mădălina Radulea ◽  
Gheorghe Lămureanu ◽  
Ștefan Ion Mocanu ◽  
Maria Iamandei

"The cosmopolitan aphid species Myzus persicae is a key pest of peach orchards in south and southeastern Romania. The phenomenon of resistance induced by the intensive use of insecticides is a matter of concern for farmers and protectionists, making necessary integrated measure for the control of this pest. Conservation of natural enemy’s populations is an essential component of any management system proposed for pest aphids. The aim of the study was to determine the structure of predatory insects associated with Myzus persicae populations in peach orchards. The research was carried out in three orchards from two localities from Constanta County, in peach plantations with Springcrest variety aged 7, 11 and 12 years. As a result of this study, there were determined a total of 15 predatory insect species belonging to eight systematic families: Coccinellidae, Chrysopidae, Hemerobiidae, Syrphydae, Cecidomyiidae, Panorpidae, Nabidae and Forficulidae, which naturally contribute to the reduction of the green peach aphid populations. "


1990 ◽  
Vol 68 (4) ◽  
pp. 694-698 ◽  
Author(s):  
Yvan Pelletier

Twenty-five colors were evaluated for their effect on the initiation of probing behavior in the green peach aphid, Myzus persicae (Sulzer), and the potato aphid, Macrosiphum euphorbiae (Thomas). The proportion of aphids of both species initiating probing behavior was maximum on green, yellow, or orange and lowest on purple, blue, white, or black. The time taken by individual aphids to begin probing was shorter for M. persicae than for M. euphorbiae but was essentially unaffected by colors. A larger proportion of both aphid species probed on the lower surface of potato (var. Kathadin) leaflet compared with the upper surface. The proportion of aphids initiating probing was the same on the lower surface of a potato leaf and on paper similar in color, indicating that the color of the substratum is determinant in the initiation of feeding for those aphids.


2014 ◽  
Vol 27 (7) ◽  
pp. 747-756 ◽  
Author(s):  
Dezi A. Elzinga ◽  
Martin De Vos ◽  
Georg Jander

The complex interactions between aphids and their host plant are species-specific and involve multiple layers of recognition and defense. Aphid salivary proteins, which are released into the plant during phloem feeding, are a likely mediator of these interactions. In an approach to identify aphid effectors that facilitate feeding from host plants, eleven Myzus persicae (green peach aphid) salivary proteins and the GroEL protein of Buchnera aphidicola, a bacterial endosymbiont of this aphid species, were expressed transiently in Nicotiana tabacum (tobacco). Whereas two salivary proteins increased aphid reproduction, expression of three other aphid proteins and GroEL significantly decreased aphid reproduction on N. tabacum. These effects were recapitulated in stable transgenic Arabidopsis thaliana plants. Further experiments with A. thaliana expressing Mp55, a salivary protein that increased aphid reproduction, showed lower accumulation of 4-methoxyindol-3-ylmethylglucosinolate, callose and hydrogen peroxide in response to aphid feeding. Mp55-expressing plants also were more attractive for aphids in choice assays. Silencing Mp55 gene expression in M. persicae using RNA interference approaches reduced aphid reproduction on N. tabacum, A. thaliana, and N. benthamiana. Together, these results demonstrate a role for Mp55, a protein with as-yet-unknown molecular function, in the interaction of M. persicae with its host plants.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiao Ma ◽  
Wen-Xian Gai ◽  
Yi-Ming Qiao ◽  
Muhammad Ali ◽  
Ai-Min Wei ◽  
...  

Abstract Background Calcineurin B-like proteins (CBLs) are major Ca2+ sensors that interact with CBL-interacting protein kinases (CIPKs) to regulate growth and development in plants. The CBL-CIPK network is involved in stress response, yet little is understood on how CBL-CIPK function in pepper (Capsicum annuum L.), a staple vegetable crop that is threatened by biotic and abiotic stressors. Results In the present study, nine CaCBL and 26 CaCIPK genes were identified in pepper and the genes were named based on their chromosomal order. Phylogenetic and structural analysis revealed that CaCBL and CaCIPK genes clustered in four and five groups, respectively. Quantitative real-time PCR (qRT-PCR) assays showed that CaCBL and CaCIPK genes were constitutively expressed in different tissues, and their expression patterns were altered when the plant was exposed to Phytophthora capsici, salt and osmotic stress. CaCIPK1 expression changed in response to stress, including exposure to P. capsici, NaCl, mannitol, salicylic acid (SA), methyl jasmonate (MeJA), abscisic acid (ABA), ethylene (ETH), cold and heat stress. Knocking down CaCIPK1 expression increased the susceptibility of pepper to P. capsici, reduced root activity, and altered the expression of defense related genes. Transient overexpression of CaCIPK1 enhanced H2O2 accumulation, cell death, and expression of genes involved in defense. Conclusions Nine CaCBL and 26 CaCIPK genes were identified in the pepper genome, and the expression of most CaCBL and CaCIPK genes were altered when the plant was exposed to stress. In particular, we found that CaCIPK1 is mediates the pepper plant’s defense against P. capsici. These results provide the groundwork for further functional characterization of CaCBL and CaCIPK genes in pepper.


PLoS Genetics ◽  
2010 ◽  
Vol 6 (11) ◽  
pp. e1001216 ◽  
Author(s):  
Jorunn I. B. Bos ◽  
David Prince ◽  
Marco Pitino ◽  
Massimo E. Maffei ◽  
Joe Win ◽  
...  

2018 ◽  
Vol 31 (4) ◽  
pp. 481-493 ◽  
Author(s):  
R. J. D. Dalio ◽  
H. J. Maximo ◽  
T. S. Oliveira ◽  
R. O. Dias ◽  
M. C. Breton ◽  
...  

Phytophthora species secrete several classes of effector proteins during interaction with their hosts. These proteins can have multiple functions including modulation of host physiology and immunity. The RxLR effectors have the ability to enter plant cells using the plant machinery. Some of these effectors have been characterized as immunity suppressors; however, very little is known about their functions in the interaction between Phytophthora parasitica and its hosts. Using a bioinformatics pipeline, we have identified 172 candidate RxLR effectors (CREs) in the isolate IAC 01_95 of P. parasitica. Of these 172 CREs, 93 were found to be also present in eight other genomes of P. parasitica, isolated from different hosts and continents. After transcriptomics and gene expression analysis, we have found five CREs to be up-regulated in in-vitro and in-planta samples. Subsequently, we selected three CREs for functional characterization in the model plant Nicotiana benthamiana. We show that PpRxLR2 is able to completely suppress INF-1-induced cell death, whereas PpRxLR3 and PpRxLR5 moderately suppressed N. benthamiana immunity in a less-extensive manner. Moreover, we confirmed the effector-triggered susceptibility activity of these proteins after transient transformation and infection of N. benthamiana plants. All three CREs enhanced virulence of P. parasitica during the interaction with N. benthamiana. These effectors, in particular PpRxLR2, can be targeted for the development of biotechnology-based control strategies of P. parasitica diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chunqiu Zhang ◽  
Ben N. Mansfeld ◽  
Ying-Chen Lin ◽  
Rebecca Grumet

Effective assessment of pathogen growth can facilitate screening for disease resistance, mapping of resistance loci, testing efficacy of control measures, or elucidation of fundamental host-pathogen interactions. Current methods are often limited by subjective assessments, inability to detect pathogen growth prior to appearance of symptoms, destructive sampling, or limited capacity for replication and quantitative analysis. In this work we sought to develop a real-time, in vivo, high-throughput assay that would allow for quantification of pathogen growth. To establish such a system, we worked with the broad host-range, highly destructive, soil-borne oomycete pathogen, Phytophthora capsici. We used an isolate expressing red fluorescence protein (RFP) to establish a microtiter plate, real-time assay to quantify pathogen growth in live tissue. The system was successfully used to monitor P. capsici growth in planta on cucumber (Cucumis sativus) fruit and pepper (Capsicum annuum) leaf samples in relation to different levels of host susceptibility. These results demonstrate usefulness of the method in different species and tissue types, allowing for highly replicated, quantitative time-course measurements of pathogen growth in vivo. Analyses of pathogen growth during initial stages of infection preceding symptom development show the importance of very early stages of infection in determining disease outcome, and provide insight into points of inhibition of pathogen growth in different resistance systems.


2019 ◽  
Vol 9 (11) ◽  
pp. 2239 ◽  
Author(s):  
Spiridon Mantzoukas ◽  
Ioannis Lagogiannis

Aphids are among the most harmful crop pests, damaging plants by sucking sap or by transmitting pathogenic viruses. Plant infestation by aphids depends on their population growth. Entomopathogenic fungi are essential participants of terrestrial and aquatic ecosystems, regulating arthropod communities. Many fungal species with a symbiotic–endophytic relation with plants are pathogenic, producing insecticides or insect repellents. The present study investigated the effects of the fungal entomopathogens Beauveria bassiana, Metarhizium anisopliae and Isaria fumosorosea, following their endophytic colonization of the sweet pepper Capsicum annum, on the development of the green peach aphid Myzus persicae. After 21 days, B. bassiana produced 100% aphid mortality, M. anisopliae 90% and I. fumosorosea 83.3%. There were also significant differences in terms of the effect on aphid population in planta and on the survival time of young adults in planta. External mycelium appeared within 96 h after placing aphid cadavers on damp filter paper. PCR confirmed that the mycelium was of B. bassiana, M. anisopliae and I. fumosorosea. DNA sequences collected from this work were matched with existing sequences data in GenBank, using the Basic Local Alignment Search Tool. Our results showed that none of the three fungal isolates had an effect in promoting or suppressing the growth of C. annum.


Author(s):  
R.A. Bagrov ◽  
◽  
V.I. Leunov

The mechanisms of transmission of potato viruses from plants to aphid vectors and from aphids to uninfected plants are described, including the example of the green peach aphid (Myzus persicae, GPA). Factors affecting the spreading of tuber necrosis and its manifestation on plants infected with potato leafroll virus (PLRV) are discussed. Recommendations for PLRV and GPA control in the field are given.


Sign in / Sign up

Export Citation Format

Share Document