scholarly journals Research on Polarization and Phase Fading Compensation in Michelson Interferometer Based on 3 × 3 Coupler and Novel Probe with Built-in Faraday Rotator

2019 ◽  
Vol 9 (19) ◽  
pp. 4173
Author(s):  
Shuaiqi Jing ◽  
Jian Rong ◽  
Jiayan Tian

A self-designed probe and a feedback control scheme based on the Michelson interferometer with a 3 × 3 fiber coupler are proposed. A 45° Faraday rotator is built into the self-designed probe, and a feedback control scheme is used to judge the direction of increase or decrease for the phase compensation, so as to solve the problems of polarization and phase fading. In addition, a result-normalized method is applied in a micro-vibration measurement experiment. The experimental interferometer system achieves a high frequency of 1 MHz micro-vibration. The normalized results keep stable with a maximum deviation from the mean of 1.9% when the power of light reflected back into the self-designed probe is altered. Applied research is carried out by detecting the displacement due to a photoacoustic wave. Therefore, the experimental interferometer system is available for the practical application of micro-displacement measurements, noncontact high-frequency detection, and point-by-point image scanning in biological tissue.

2021 ◽  
pp. 107754632199731
Author(s):  
He Zhu ◽  
Shuai He ◽  
Zhenbang Xu ◽  
XiaoMing Wang ◽  
Chao Qin ◽  
...  

In this article, a six-degree-of-freedom (6-DOF) micro-vibration platform (6-MVP) based on the Gough–Stewart configuration is designed to reproduce the 6-DOF micro-vibration that occurs at the installation surfaces of sensitive space-based instruments such as large space optical loads and laser communications equipment. The platform’s dynamic model is simplified because of the small displacement characteristics of micro-vibrations. By considering the multifrequency line spectrum characteristics of micro-vibrations and the parameter uncertainties, an iterative feedback control strategy based on a frequency response model is designed, and the effectiveness of the proposed control strategy is verified by performing integrated simulations. Finally, micro-vibration experiments are performed with a 10 kg load on the platform. The results of these micro-vibration experiments show that after several iterations, the amplitude control errors are less than 3% and the phase control errors are less than 1°. The control strategy presented in this article offers the advantages of a simple algorithm and high precision and it can also be used to control other similar micro-vibration platforms.


Author(s):  
Jatin K Pradhan ◽  
Arun Ghosh

It is well known that linear time-invariant controllers fail to provide desired robustness margins (e.g. gain margin, phase margin) for plants with non-minimum phase zeros. Attempts have been made in literature to alleviate this problem using high-frequency periodic controllers. But because of high frequency in nature, real-time implementation of these controllers is very challenging. In fact, no practical applications of such controllers for multivariable plants have been reported in literature till date. This article considers a laboratory-based, two-input–two-output, quadruple-tank process with a non-minimum phase zero for real-time implementation of the above periodic controller. To design the controller, first, a minimal pre-compensator is used to decouple the plant in open loop. Then the resulting single-input–single-output units are compensated using periodic controllers. It is shown through simulations and real-time experiments that owing to arbitrary loop-zero placement capability of periodic controllers, the above decoupled periodic control scheme provides much improved robustness against multi-channel output gain variations as compared to its linear time-invariant counterpart. It is also shown that in spite of this improved robustness, the nominal performances such as tracking and disturbance attenuation remain almost the same. A comparison with [Formula: see text]-linear time-invariant controllers is also carried out to show superiority of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document