scholarly journals Aerodynamic Damping Prediction for Turbomachinery Based on Fluid-Structure Interaction with Modal Excitation

2019 ◽  
Vol 9 (20) ◽  
pp. 4411
Author(s):  
Jianxiong Li ◽  
Xiaodong Yang ◽  
Anping Hou ◽  
Yingxiu Chen ◽  
Manlu Li

Aerodynamic damping predictions are critical when analyzing aeroelastic stability. A novel method has been developed to predict aerodynamic damping by employing two single time-domain simulations, specifically, one with the blade impulsed naturally in a vacuum and one with the blade impulsed in flow. The focus is on the aerodynamic damping prediction using modal excitation and the logarithmic decrement theory. The method is demonstrated by considering the first two bending modes with an inter-blade phase angle (IBPA) of 0° on a transonic compressor. The results show that the flutter boundary prediction is basically consistent with the experiment. The aerodynamic damping prediction with an IBPA of 180° is also performed, demonstrating that the method is suitable for different traveling wave mode representations. Furthermore, the influence of the amplitude of modal excitation and mechanical damping using the Rayleigh damping model for aerodynamic damping was also investigated by employing fluid-structure coupled simulations.

Author(s):  
Jize Zhong ◽  
Zili Xu

In this paper, an energy method for flutter analysis of wing using one-way fluid structure coupling was developed. To consider the effect of wing vibration, Reynolds-averaged Navier–Stokes equations based on the arbitrary Lagrangian Eulerian coordinates were employed to model the flow. The flow mesh was updated using a fast dynamic mesh technology proposed by our research group. The pressure was calculated by solving the Reynolds-averaged Navier–Stokes equations through the SIMPLE algorithm with the updated flow mesh. The aerodynamic force for the wing was computed using the pressure on the wing surface. Then the aerodynamic damping of the wing vibration was computed. Finally, the flutter stability for the wing was decided according to whether the aerodynamic damping was positive or not. Considering the first four modes, the aerodynamic damping for wing 445.6 was calculated using the present method. The results show that the aerodynamic damping of the first mode is lower than the aerodynamic damping of higher order modes. The aerodynamic damping increases with the increase of the mode order. The flutter boundary for wing 445.6 was computed using the aerodynamic damping of the first mode in this paper. The calculated flutter boundary is consistent well with the experimental data.


2021 ◽  
Vol 11 (7) ◽  
pp. 3057
Author(s):  
Jin Lu ◽  
Zhigang Wu ◽  
Chao Yang

Both the dynamic characteristics and structural nonlinearities of an actuator will affect the flutter boundary of a fin–actuator system. The actuator models used in past research are not universal, the accuracy is difficult to guarantee, and the consideration of nonlinearity is not adequate. Based on modularization, a high-fidelity modeling method for an actuator is proposed in this paper. This model considers both freeplay and friction, which is easy to expand. It can be directly used to analyze actuator characteristics and perform aeroelastic analysis of fin–actuator systems. Friction can improve the aeroelastic stability, but the mechanism of its influence on the aeroelastic characteristics of the system has not been reported. In this paper, the LuGre model, which can better reflect the friction characteristics, was integrated into the actuator. The influence of the initial condition, freeplay, and friction on the aeroelastic characteristics of the system was analyzed. The comparison of the results with the previous research shows that oversimplified friction models are not accurate enough to reflect the mechanism of friction’s influence. By changing the loads, material, and geometry of contact surfaces, flutter can be effectively suppressed, and the power loss caused by friction can be minimized.


Author(s):  
Matthias Schuff ◽  
Jannik Reisberg

A flexible UHBR fan is investigated at different flight conditions with a focus on static deflections and aeroelastic stability. Operating points at varying inlet conditions, which are comparable according to the Mach similarity principle, are investigated. However, not all the aerodynamic characteristics remain identical and aerodynamic damping of mode shape vibrations is changed. When steady deformations of the fan blades are taken into account, the deviation between different inlet conditions increases further. This is mainly due to torsional deflections, changing the effective angle of attack and causing a general shift of the compressor map. Even though the subsequent changes in flutter predictions are not severe for most parts of the compressor map, the behavior at the boundaries is sensitive to the real flight condition. As shown, the Mach similarity principle is not suitable for investigating aeroelastic stability throughout the whole flight envelope, especially when the static blade deformation is not neglectable. The reason for this can be found in the complex interaction between dimension-less numbers (Mach, Reynolds), sized values (pressure difference or aerodynamic loading, natural frequency) and their dependency on each other.


Author(s):  
K. Vogel ◽  
A. D. Naidu ◽  
M. Fischer

The prediction of aerodynamic damping is a key step towards high fidelity forced response calculations. Without the knowledge of absolute damping values, the resulting stresses from forced response calculations are often afflicted with large uncertainties. In addition, with the knowledge of the aerodynamic damping the aeroelastic contribution to mistuning can be considered. The first section of this paper compares two methods of one-way-coupled aerodynamic damping computations on an axial turbine. Those methods are: the aerodynamic influence coefficient, and the travelling wave mode method. Excellent agreement between the two methods is found with significant differences in required computational time. The average deviation between all methods for the transonic turbine is 4%. Additionally, the use of transient blade row methods with phase lagged periodic boundaries are investigated and the influence of periodic boundaries on the aerodynamic influence coefficients are assessed. A total of 23 out of 33 passages are needed to remove all influence from the periodic boundaries for the present configuration. The second part of the paper presents the aerodynamic damping calculations for a centrifugal compressor. Simulations are predominantly performed using the aerodynamic influence coefficient approach. The influence of the periodic boundaries and the recirculation channel is investigated. All simulations are performed on a modern turbocharger turbine and centrifugal compressor using ANSYS CFX V17.0 with an inhouse pre- and post-processing procedure at ABB Turbocharging. The comparison to experimental results concludes the paper.


Author(s):  
Sebastian Willeke ◽  
Lukas Schwerdt ◽  
Lars Panning-von Scheidt ◽  
Jörg Wallaschek

A harmonic mistuning concept for bladed disks is analyzed in order to intentionally reduce the forced response of specific modes below their tuned amplitude level. By splitting a mode pair associated with a specific nodal diameter pattern, the lightly damped traveling wave mode of the nominally tuned blisk is superposed with its counter-rotating complement. Consequently, a standing wave is formed in which the former wave train benefits from an increase in aerodynamic damping. Unlike previous analyses of randomly perturbed configurations, the mode-specific stabilization is intentionally promoted through adjusting the harmonic content of the mistuning pattern. Through a re-orientation of the localized mode shapes in relation to the discrete blades, the response is additionally attenuated by an amount of up to 7.6 %. The achievable level of amplitude reduction is analytically predicted based on the properties of the tuned system. Furthermore, the required degree of mistuning for a sufficient separation of a mode pair is derived.


Sign in / Sign up

Export Citation Format

Share Document