scholarly journals Learning-Based Anomaly Detection and Monitoring for Swarm Drone Flights

2019 ◽  
Vol 9 (24) ◽  
pp. 5477 ◽  
Author(s):  
Hyojung Ahn ◽  
Han-Lim Choi ◽  
Minguk Kang ◽  
SungTae Moon

This paper addresses anomaly detection and monitoring for swarm drone flights. While the current practice of swarm flight typically relies on the operator’s naked eyes to monitor health of the multiple vehicles, this work proposes a machine learning-based framework to enable detection of abnormal behavior of a large number of flying drones on the fly. The method works in two steps: a sequence of two unsupervised learning procedures reduces the dimensionality of the real flight test data and labels them as normal and abnormal cases; then, a deep neural network classifier with one-dimensional convolution layers followed by fully connected multi-layer perceptron extracts the associated features and distinguishes the anomaly from normal conditions. The proposed anomaly detection scheme is validated on the real flight test data, highlighting its capability of online implementation.

2022 ◽  
Vol 16 (1) ◽  
pp. 0-0

Anomaly detection is a very important step in building a secure and trustworthy system. Manually it is daunting to analyze and detect failures and anomalies. In this paper, we proposed an approach that leverages the pattern matching capabilities of Convolution Neural Network (CNN) for anomaly detection in system logs. Features from log files are extracted using a windowing technique. Based on this feature, a one-dimensional image (1×n dimension) is generated where the pixel values of an image correlate with the features of the logs. On these images, the 1D Convolution operation is applied followed by max pooling. Followed by Convolution layers, a multi-layer feed-forward neural network is used as a classifier that learns to classify the logs as normal or abnormal from the representation created by the convolution layers. The model learns the variation in log pattern for normal and abnormal behavior. The proposed approach achieved improved accuracy compared to existing approaches for anomaly detection in Hadoop Distributed File System (HDFS) logs.


2021 ◽  
Author(s):  
Sven Marschalk ◽  
Peter C. Luteijn ◽  
Dirk van Os ◽  
Daan M. Pool ◽  
Coen C. de Visser
Keyword(s):  

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1635
Author(s):  
Neeraj Chugh ◽  
Geetam Singh Tomar ◽  
Robin Singh Bhadoria ◽  
Neetesh Saxena

To sustain the security services in a Mobile Ad Hoc Networks (MANET), applications in terms of confidentially, authentication, integrity, authorization, key management, and abnormal behavior detection/anomaly detection are significant. The implementation of a sophisticated security mechanism requires a large number of network resources that degrade network performance. In addition, routing protocols designed for MANETs should be energy efficient in order to maximize network performance. In line with this view, this work proposes a new hybrid method called the data-driven zone-based routing protocol (DD-ZRP) for resource-constrained MANETs that incorporate anomaly detection schemes for security and energy awareness using Network Simulator 3. Most of the existing schemes use constant threshold values, which leads to false positive issues in the network. DD-ZRP uses a dynamic threshold to detect anomalies in MANETs. The simulation results show an improved detection ratio and performance for DD-ZRP over existing schemes; the method is substantially better than the prevailing protocols with respect to anomaly detection for security enhancement, energy efficiency, and optimization of available resources.


Author(s):  
Xu Liu ◽  
Weiyou Liu ◽  
Xiaoqiang Di ◽  
Jinqing Li ◽  
Binbin Cai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document