scholarly journals Effects of Treated Manure Conditions on Ammonia and Hydrogen Sulfide Emissions from a Swine Finishing Barn Equipped with Semicontinuous Pit Recharge System in Summer

Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 713
Author(s):  
Jisoo Wi ◽  
Seunghun Lee ◽  
Eunjong Kim ◽  
Myeongseong Lee ◽  
Jacek A. Koziel ◽  
...  

Gaseous emissions from animal production systems affect the local and regional air quality. Proven farm-scale mitigation technologies are needed to lower these emissions and to provide management practices that are feasible and sustainable. In this research, we evaluate the performance of a unique approach that simultaneously mitigates emissions and improves air quality inside a barn equipped with a manure pit recharge system. Specifically, we tested the effects of summertime feeding rations (used by farmers to cope with animal heat stress) and manure management. To date, the pit recharge system has been proven to be effective in mitigating both ammonia (NH3; approximately 53%) and hydrogen sulfide (H2S; approximately 84%) emissions during mild climate conditions. However, its performance during the hot season with a high crude protein diet and high nitrogen loading into the pit manure recharge system is unknown. Therefore, we compared the emissions and indoor air quality of the rooms (240 pigs, ~80 kg each) equipped with a conventional slurry and pit recharge system. The main findings highlight the importance and impact of seasonal variation and diet and manure management practices. We observed 31% greater NH3 emissions from the pit recharge system (33.7 ± 1.4 g·head−1·day−1) compared with a conventional slurry system (25.9 ± 2.4 g·head−1·day−1). Additionally, the NH3 concentration inside the barn was higher (by 24%) in the pit recharge system compared with the control. On the other hand, H2S emissions were 55% lower in the pit recharge system (628 ± 47 mg·head−1·day−1) compared with a conventional slurry pit (1400 ± 132 mg·head−1·day−1). Additionally, the H2S concentration inside the barn was lower (by 54%) in the pit recharge system compared with the control. The characteristics of the pit recharge liquid (i.e., aerobically treated manure), such as the total nitrogen (TN) and ammonium N (NH4-N) contents, contributed to the higher NH3 emissions from the pit recharge system in summer. However, their influence on H2S emissions had a relatively low impact, i.e., emissions were still reduced, similarly as they were in mild climate conditions. Overall, it is necessary to consider a seasonal diet and manure management practices when evaluating emissions and indoor air quality. Further research on minimizing the seasonal nitrogen loading and optimizing pit recharge manure characteristics is warranted.

Author(s):  
Gabriela Ventura Silva ◽  
Anabela O. Martins ◽  
Susana D. S. Martins

Indoor air pollution has obtained more attention in a moment where “stay at home” is a maximum repeated for the entire world. It is urgent to know the sources of pollutants indoors, to improve the indoor air quality. This study presents some results obtained for twelve incense products, used indoors, at home, and in temples, but also in spa centers or yoga gymnasiums, where the respiratory intensity is high, and the consequences on health could be more severe. The focus of this study was the gaseous emissions of different types of incense, performing a VOC screening and identifying some specific VOCs different from the usual ones, which are known or suspected to cause severe chronic health effects: carcinogenic, mutagenic, and reprotoxic. Thirteen compounds were selected: benzene, toluene, styrene, naphthalene, furfural, furan, isoprene, 2-butenal, phenol, 2-furyl methyl ketone, formaldehyde, acetaldehyde, and acrolein. The study also indicated that incense cone type shows a higher probability of being more pollutant than incense stick type, as from the 12 products tested, four were cone type, and three of them were in the group of the four higher polluters. Benzene and formaldehyde presented worrying levels in the major part of the products, above guideline values established by the WHO. Unfortunately, there are no limit values established for indoor air for all the compounds studied, but this fact should not exempt us from taking action to alert the population to the potential dangers of using those products. From this study, acetaldehyde, acrolein, furfural, and furan emerge as compounds with levels to deserve attention.


2021 ◽  
Vol 26 (2) ◽  
pp. 69-75
Author(s):  
Nompumelelo Leshabane ◽  
James Tshilongo ◽  
Shadung J. Moja ◽  
Napo G. Ntsasa ◽  
Gumani Mphaphuli ◽  
...  

Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 17
Author(s):  
Andrés F. Gonzalez-Mora ◽  
Araceli D. Larios ◽  
Alain N. Rousseau ◽  
Stéphane Godbout ◽  
Cédric Morin ◽  
...  

Animal welfare concerns have been a challenging issue for producers and international marketing. In laying hen production, cage-free systems (CFS) have been identified as an alternative to ensure the laying hens’ well-being. Nevertheless, in CFS, important environmental issues have been reported, decreasing indoor air quality. Environmental control strategies (ECS) have been designed to enhance indoor air quality in CFSs. However, little information exists about the effect of these ECSs on natural animal behaviors. Four strategies and one control were tested in an experimental CFS, previously designed to track behavioral variables using video recordings over seven time-lapses of 1 hour per day. Spatial occupancy (SO) and laying hen behaviors (LHB) were registered. One statistical analysis was applied to evaluate the effect of ECS on SO and LHB using a multinomial response model. Results show lower chances to use litter area within the reduction of litter allowance treatment (T17) (p < 0.05). Neither the four ECSs nor the control implemented in this experiment affected the natural behaviors of the hens. However, stress patterns and high activity were reported in the T17 treatment. This study shows that it is possible to use these ECSs without disrupting laying hens’ natural behaviors.


2021 ◽  
Vol 246 ◽  
pp. 03004
Author(s):  
Eusébio Conceição ◽  
João Gomes ◽  
Maria Manuela Lúcio ◽  
Hazim Awbi

The present work focuses on the production of thermal energy in University building greenhouses in cold climate conditions. The building model uses a system of energy and mass balance integral equations, which are solved by the Runge–Kutta–Felberg method with error control. This numerical study is about the thermal behaviour of a university building with complex topology, in winter and transient conditions. The thermal comfort of the occupants, using the Predicted Mean Vote index, and the indoor air quality, using the carbon dioxide concentration, are evaluated. This building has 319 compartments distributed by four floors and it is equipped with one internal greenhouse in the third floor. This greenhouse is located on the south facing facade and the heated air in this space will be transported to compartments located on the north facing façade. The spaces subject to the influence of the heated air coming from the greenhouse improve the level of thermal comfort of its occupants. The level of indoor air quality in occupied spaces is acceptable according to international standards.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4915
Author(s):  
Seyedmohammadreza Heibati ◽  
Wahid Maref ◽  
Hamed H. Saber

In this paper, an integrated model that coupled CONTAM and WUFI was developed to assess the indoor air quality (IAQ), moisture, and thermal comfort performance. The coupling method of CONTAM and WUFI is described based on the exchange of airflow rate control variables as infiltration, natural and mechanical ventilation parameters between heat and moisture flow balance equations in WUFI and contaminant flow balances equations in CONTAM. To evaluate the predictions of the integrated model compared to single models of CONTAM and WUFI, four scenarios were used. These scenarios are airtight-fan off, airtight-fan on, leaky-fan off, and leaky-fan on, and were defined for a three-story house subjected to three different climate conditions of Montreal, Vancouver, and Miami. The measures of the simulated indoor CO2, PM2.5, and VOCs obtained by CONTAM; the simulated indoor relative humidity (RH), predicted percentage of dissatisfied (PPD), and predicted mean vote (PMV) obtained by WUFI; and those obtained by the integrated model are compared separately for all scenarios in Montreal, Vancouver, and Miami. Finally, the optimal scenarios are selected. The simulated results of the optimal scenarios with the integrated model method (−28.88% to 46.39%) are different from those obtained with the single models. This is due to the inability of the single models to correct the airflow variables.


2017 ◽  
Vol 22 (07/08) ◽  
pp. 106-107
Author(s):  
Marc Lichtenthäler

Viele Studien belegen, dass durch eine hohe Indoor Air Quality die Produktivität gesteigert, Fehlzeiten abgebaut und Herz-Kreislauf-Erkrankungen vermieden werden können. Neben Behandlungs-, OP- und Pflegebereichen eines Klinikums sollten deshalb auch Bereiche mit gut aufbereiteter Raumluft bedacht werden, in denen sich ausschließlich Mitarbeiter aufhalten.


Sign in / Sign up

Export Citation Format

Share Document