scholarly journals Domestic Water Supply Vulnerability to Climate Change and the Role of Alternative Water Sources in Kingston, Jamaica

Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1314
Author(s):  
Danneille A. Townsend ◽  
Janez Sušnik ◽  
Pieter van der Zaag

Globally, freshwater resources are threatened, resulting in challenges for urban water supply and management. Climate change, population growth, and urbanization have only exacerbated this crisis. For the Caribbean, climate change through the impact of increasing temperatures and rainfall variability has resulted in more frequent and intense episodes of disasters including droughts and floods which have impaired the quantity and quality of freshwater supplies. Using Caribbean-specific climate forecasting, it is shown that rainfall totals in Kingston, Jamaica, are expected to reduce by 2030 and 2050 under two RCPs. In addition, the timing of the primary rainy season is expected to shift, potentially impacting water supply security. Analysis of the potential of rainwater harvesting (RWH) to augment supply and enhance water supply resilience shows that in two communities studied in Kingston, it can contribute up to 7% of total water supply. Household storage requirements are about 1 m3 per household, which is feasible. RWH offers the potential to contribute to climate change adaptation and mitigation measures at a household level. Policy, incentives, and increased awareness about the potential of RWH to meet non-potable household demand in Kingston must be improved, as well as efforts to reduce the currently unreasonably high levels of non-revenue water in order to move towards an integrated, sustainable, and climate-resilient urban water supply strategy for the city.

2003 ◽  
Vol 47 (7-8) ◽  
pp. 101-108 ◽  
Author(s):  
S. Maheepala ◽  
C. Perera

This paper describes a probability-based method for assessing the potential impact of climate change on urban water supply systems. Specifically, the assessment method uses probability distributions to place a confidence level on the plausible values of response variables. The Benalla water supply system has been used to demonstrate applicability of the proposed assessment method. For the application, the impact of the 2030 climate change scenarios on streamflows and system yield has been examined. The preliminary results have demonstrated that the proposed assessment method can provide valuable insights into the impact of climate change on water supply systems, allowing it to be incorporated into planning decisions.


2021 ◽  
Author(s):  
Richard Dallison ◽  
Sopan Patil

<p>The impact of climate change on the hydrological cycle and catchment processes has been extensively studied. In Wales, such changes are projected to have a substantial impact on hydrological regimes. However, the impact on the water abstraction capability of key sectors in the country, such as hydropower (HP) and public water supply (PWS), is not yet fully understood. We use the Soil and Water Assessment Tool (SWAT) to generate future (2021-2054) daily streamflows under a worst-case scenario of greenhouse gas emissions (Representative Concentration Pathway 8.5) at two large catchments in Wales, the Conwy and Tywi. SWAT streamflow output is used to estimate the abstractable water resources, and therefore changes in the average generation characteristics for 25 run-of-river HP schemes across Conwy and Tywi and the total unmet demand for a single large PWS abstraction in the Tywi. This unmet PWS demand is assessed using the Water Evaluation And Planning (WEAP) system under increasing, static, and declining demand scenarios. Mann-Kendall trend analysis is performed to detect and characterise the trends for both sectors.</p><p>Results show greater seasonality in abstraction potential through the study period, with an overall decrease in annual abstraction volume due to summer and autumn streamflow declines outweighing increases seen in winter and spring. For HP, these trends result in a projected decline in annual power generation potential, despite an increasing number of days per year that maximum permitted abstraction is reached. For PWS, under all future demand scenarios, annually there is an increase in the number of days where demand is not met as well as the total shortfall volume of water. Our results suggest that currently installed HP schemes may not make optimal use of future flows, and that the planning of future schemes should take account of these to ensure the most efficient operation is achieved. Moreover, PWS supply sustainability is under threat and will require management and mitigation measures to be implemented to ensure future supplies. Overall, our study provides a novel perspective on the future water resource availability in Wales, giving context to management planning to ensure future HP generation efficiency and PWS sustainability.</p>


2008 ◽  
Vol 22 (10) ◽  
pp. 1477-1497 ◽  
Author(s):  
Jeffrey K. O’Hara ◽  
Konstantine P. Georgakakos

2013 ◽  
Vol 11 (1) ◽  
pp. 62-81 ◽  
Author(s):  
Prakash K Jha ◽  
Krishna K Shrestha

DOI: http://dx.doi.org/10.3126/jfl.v11i1.8613 Journal of Forestry and Livelihood Vol.11(1) 2013 62-81


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 778 ◽  
Author(s):  
Baohui Men ◽  
Zhijian Wu ◽  
Huanlong Liu ◽  
Yangsong Li ◽  
Yong Zhao

When a city’s water demand cannot be fully satisfied, the hedging rule can reduce water loss by limiting water supply in advance. Based on water supply priority and benefit loss of water shortage for different users, this paper improved the objective function of hedging rules considering the benefit loss of water shortage. At the same time, according to the idea of restricting water supply by water users in turn, improved hedging rules (IHR) are applied to the urban water supply in Tianjin. The conclusions achieved from this study are as follows: (1) IHR increased water supply assurance rates for domestic water with high-priority and avoided destructive water shortages in agricultural water with low-priority. (2) IHR can better reduce the destructive loss caused by a large number of water shortages and the loss of production caused by a small numbers of water shortages than traditional hedging rules, which ensures high efficiency of water supply during the dry period. The results show that the IHR can improve the operational performance of the urban water supply.


Sign in / Sign up

Export Citation Format

Share Document