Impact of climate change on abstraction for hydropower and public water supply in Wales, UK

Author(s):  
Richard Dallison ◽  
Sopan Patil

<p>The impact of climate change on the hydrological cycle and catchment processes has been extensively studied. In Wales, such changes are projected to have a substantial impact on hydrological regimes. However, the impact on the water abstraction capability of key sectors in the country, such as hydropower (HP) and public water supply (PWS), is not yet fully understood. We use the Soil and Water Assessment Tool (SWAT) to generate future (2021-2054) daily streamflows under a worst-case scenario of greenhouse gas emissions (Representative Concentration Pathway 8.5) at two large catchments in Wales, the Conwy and Tywi. SWAT streamflow output is used to estimate the abstractable water resources, and therefore changes in the average generation characteristics for 25 run-of-river HP schemes across Conwy and Tywi and the total unmet demand for a single large PWS abstraction in the Tywi. This unmet PWS demand is assessed using the Water Evaluation And Planning (WEAP) system under increasing, static, and declining demand scenarios. Mann-Kendall trend analysis is performed to detect and characterise the trends for both sectors.</p><p>Results show greater seasonality in abstraction potential through the study period, with an overall decrease in annual abstraction volume due to summer and autumn streamflow declines outweighing increases seen in winter and spring. For HP, these trends result in a projected decline in annual power generation potential, despite an increasing number of days per year that maximum permitted abstraction is reached. For PWS, under all future demand scenarios, annually there is an increase in the number of days where demand is not met as well as the total shortfall volume of water. Our results suggest that currently installed HP schemes may not make optimal use of future flows, and that the planning of future schemes should take account of these to ensure the most efficient operation is achieved. Moreover, PWS supply sustainability is under threat and will require management and mitigation measures to be implemented to ensure future supplies. Overall, our study provides a novel perspective on the future water resource availability in Wales, giving context to management planning to ensure future HP generation efficiency and PWS sustainability.</p>

Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1838 ◽  
Author(s):  
Mattia Bonato ◽  
Alessandro Ranzani ◽  
Epari Ritesh Patro ◽  
Ludovic Gaudard ◽  
Carlo De Michele

Climate change has repercussions on the management of water resources. Particularly, changes in precipitation and temperature impact hydropower generation and revenue by affecting seasonal electricity prices and streamflow. This issue exemplifies the impact of climate change on the water-energy-nexus, which has raised serious concern. This paper investigates the impact of climate change on hydropower with a multidisciplinary approach. A holistic perspective should be favored as the issue is complex, consequently, we chose to investigate a specific case study in Italy. It allows grasping the details, which matters in mountainous area. We integrated a hydrological model, hydropower management model, nine climate scenarios, and five electricity scenarios for a specific storage hydropower plant. Independently from the scenarios, the results show a glacier volume shrinkage upward of 40% by 2031 and minimum of 50% by 2046. The reservoir mitigates losses of revenue that reach 8% in the worst case, however, are lower compared with run-of-the-river configuration. Changes in price seasonality amplitude also determine modifications in revenues, while temporal shifts appear to be ineffective. For run-of-the-river, any variation in hydrological cycle immediately translates into revenue. Comparing the results of all future scenarios with the base scenario, it can be concluded that an increase in temperature will slightly improve the performances of hydropower.


2012 ◽  
Vol 116 (3-4) ◽  
pp. 437-456 ◽  
Author(s):  
Adão H. Matonse ◽  
Donald C. Pierson ◽  
Allan Frei ◽  
Mark S. Zion ◽  
Aavudai Anandhi ◽  
...  

2020 ◽  
Author(s):  
Andres Goyburo ◽  
Pedro Rau ◽  
Waldo Lavado ◽  
Fabian Drenkhan ◽  
Wouter Buytaert

<p>This research assesses present (2009-2016) and future (until 2100) levels of water security taking into consideration socioeconomic and climate change scenarios using the WEAP (Water Evaluation and Planning) tool for semidistributed hydrological modeling. The study area covers the  Vilcanota-Urubamba basin in the southern Peruvian Andes and presents a complex water demand context as a glacier-fed system.</p><p>Current total water demand is estimated in 5.12E+9 m3/year and includes agriculture (6674.17 m3/year), domestic (7.79E+07m3/year), industrial (1.01E+06 m3/year) and energy (5.03e+9 m3/year) consumption. For assessing the current water supply, observed flow data is used to simulate and validate the model (also accounting for glacier melt contribution). The analysis of unmet water demand for the period 2016–2100 was computed using the soil moisture scheme of the WEAP model, which simulates the hydrological cycle and generates future scenarios for water demand. Different scenarios were generated for external driving factors (population growth and increasing agriculture area) and the impact of climate change to evaluate their effect on the current water supply system. </p><p>These results will allow for the first time to evaluate the impact of changes in glacier melt contributions on water security taking into account also changes in water demand.</p><p>This study also further explores the importance of incorporating science and policy within a broader study of water security. As a result, it is expected to deliver high spatial resolution water demand maps and adaptation strategies for stakeholders. This research is part of the RAHU project as a new multidisciplinary collaboration between UK and Peruvian scientists.</p>


2003 ◽  
Vol 47 (7-8) ◽  
pp. 101-108 ◽  
Author(s):  
S. Maheepala ◽  
C. Perera

This paper describes a probability-based method for assessing the potential impact of climate change on urban water supply systems. Specifically, the assessment method uses probability distributions to place a confidence level on the plausible values of response variables. The Benalla water supply system has been used to demonstrate applicability of the proposed assessment method. For the application, the impact of the 2030 climate change scenarios on streamflows and system yield has been examined. The preliminary results have demonstrated that the proposed assessment method can provide valuable insights into the impact of climate change on water supply systems, allowing it to be incorporated into planning decisions.


Author(s):  
Pooja Arora ◽  
Rajni Devi ◽  
Smita Chaudhry

Climate change is posing a great threat to agriculture and food security, especially in the agriculture oriented and developing countries like India. The present study was carried out to critically study the impact of climate change on productivity of major cereal and commercial crops by statistically analyzing the time series data.  The analysis inferred that crop production of both food and commercial crops in India has increased since 1960-61. It was observed that major food crops (rice & wheat) were adversely affected by increase in maximum temperature and decrease in rainfall. The alternative measures such as area under cultivation, irrigation, fertilizer and pesticide consumption were observed to be nullifying that negative impact of climate change by enhancing the overall production. However, the commercial crops were observed to be positively affected by the increasing temperature. The study suggested that although the agriculture sector is able to withstand the adverse impact of climate change till now, but in near future this situation can become reversed. This necessitates the implementation of appropriate adaptation and mitigation measures to deal with the problems of climate change and to ensure the food security and food safety along in long run.


Sign in / Sign up

Export Citation Format

Share Document