scholarly journals The Caribbean and 1.5 °C: Is SRM an Option?

Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 367
Author(s):  
Leonardo A. Clarke ◽  
Michael A. Taylor ◽  
Abel Centella-Artola ◽  
Matthew St. M. Williams ◽  
Jayaka D. Campbell ◽  
...  

The Caribbean, along with other small island developing states (SIDS), have advocated for restricting global warming to 1.5 °C above pre-industrial levels by the end of the current century. Solar radiation management (SRM) may be one way to achieve this goal. This paper examines the mean Caribbean climate under various scenarios of an SRM-altered versus an SRM-unaltered world for three global warming targets, namely, 1.5, 2.0 and 2.5 °C above pre-industrial levels. Data from the Geoengineering Model Intercomparison Project Phase 1 (GeoMIP1) were examined for two SRM scenarios: the G3 experiment where there is a gradual injection of sulfur dioxide (SO2) into the tropical lower stratosphere starting in 2020 and terminating after 50 years, and the G4 experiment where a fixed 5 Teragram (Tg) of SO2 per year is injected into the atmosphere starting in 2020 and ending after 50 years. The results show that SRM has the potential to delay attainment of the 1.5, 2.0 and 2.5 °C global warming targets. The extent of the delay varies depending on the SRM methodology but may be beyond mid-century for the 1.5 °C goal. In comparison, however, the higher temperature thresholds are both still attained before the end of century once SRM is ceased, raising questions about the value of the initial delay. The application of SRM also significantly alters mean Caribbean climate during the global warming target years (determined for a representative concentration pathway 4.5 (RCP4.5) world without SRM). The Caribbean is generally cooler but drier during the 1.5 °C years and similarly cool but less dry for years corresponding to the higher temperature targets. Finally, the mean Caribbean climate at 1.5 °C differs if the global warming target is achieved under SRM versus RCP4.5. The same is true for the higher warming targets. The implications of all the results are discussed as a background for determining whether SRM represents a viable consideration for Caribbean SIDS to achieve their “1.5 to stay alive” goal.

2018 ◽  
Vol 31 (7) ◽  
pp. 2907-2926 ◽  
Author(s):  
Michael A. Taylor ◽  
Leonardo A. Clarke ◽  
Abel Centella ◽  
Arnoldo Bezanilla ◽  
Tannecia S. Stephenson ◽  
...  

A 10-member ensemble from phase 5 of the Coupled Model Intercomparison Project (CMIP5) is used to analyze the Caribbean’s future climate when mean global surface air temperatures are 1.5°, 2.0°, and 2.5°C above preindustrial (1861–1900) values. The global warming targets are attained by the 2030s, 2050s, and 2070s respectively for RCP4.5. The Caribbean on average exhibits smaller mean surface air temperature increases than the globe, although there are parts of the region that are always warmer than the global warming targets. In comparison to the present (using a 1971–2000 baseline), the Caribbean domain is 0.5° to 1.5°C warmer at the 1.5°C target, 5%–10% wetter except for the northeast and southeast Caribbean, which are drier, and experiences increases in annual warm spells of more than 100 days. At the 2.0°C target, there is additional warming by 0.2°–1.0°C, a further extension of warm spells by up to 70 days, a shift to a predominantly drier region (5%–15% less than present day), and a greater occurrence of droughts. The climate patterns at 2.5°C indicate an intensification of the changes seen at 2.0°C. The shift in the rainfall pattern between 1.5°C (wet) and 2.0°C (dry) for parts of the domain has implications for regional adaptation pursuits. The results provide some justification for the lobby by the Caribbean Community and Small Island Developing States to limit global warming to 1.5°C above preindustrial levels, as embodied in the slogan “1.5 to Stay Alive.”


2019 ◽  
Vol 10 (3) ◽  
pp. 453-472 ◽  
Author(s):  
Koen G. Helwegen ◽  
Claudia E. Wieners ◽  
Jason E. Frank ◽  
Henk A. Dijkstra

Abstract. Solar radiation management (SRM) has been proposed as a means to reduce global warming in spite of high greenhouse-gas concentrations and to lower the chance of warming-induced tipping points. However, SRM may cause economic damages and its feasibility is still uncertain. To investigate the trade-off between these (economic) gains and damages, we incorporate SRM into a stochastic dynamic integrated assessment model and perform the first rigorous cost–benefit analysis of sulfate-based SRM under uncertainty, treating warming-induced climate tipping and SRM failure as stochastic elements. We find that within our model, SRM has the potential to greatly enhance future welfare and merits being taken seriously as a policy option. However, if only SRM and no CO2 abatement is used, global warming is not stabilised and will exceed 2 K. Therefore, even if successful, SRM can not replace but only complement CO2 abatement. The optimal policy combines CO2 abatement and modest SRM and succeeds in keeping global warming below 2 K.


2020 ◽  
Author(s):  
Davide Marchegiani ◽  
Dietmar Dommenget

<p>Solar Radiation Management (SRM) is regarded as a tool which could potentially mitigate or completely offset global warming by increasing planetary albedo. However, this approach could potentially reduce precipitation as well, as shown in the latest Intergovernmental Panel on Climate Change (ICPP) 5<sup>th</sup> report. Thus, although SRM might weaken global climate risks, it may enhance those in some regions. Here, using the Globally Resolved Energy Balance (GREB) model, we present experiments designed to completely offset the temperature and precipitation response due to a CO<sub>2</sub>-doubling experiment (abrupt2×CO2). The main idea around which our study is built upon is to employ a localized and seasonally varying SRM, as opposed to the most recent Geo-Engineering experiments which just apply a global and homogeneous one. In order to achieve such condition, we carry out the computation by using an “artificial cloud cover”. The usage of this localized approach allows us to globally cut down temperature warming in the abrupt2×CO2 scenario by 99.8% (which corresponds to an increase of 0.07 °C on a global average basis), while at the same time only having minor changes in precipitation (0.003 mm/day on a global average basis). To achieve this the cloud cover is increased by about 8% on a global average. Moreover, neither temperature nor precipitation response are exacerbated when averaged over any IPCC Special Report on Extremes (SREX) region. Indeed, for temperatures, 90% of SREX regions averages fall within 0.3 °C change, with all regional mean anomalies being under 0.38 °C. Whereas, as far as precipitation is concerned, changes go up to 0.01 mm/day for 90% of SREX regions, with all of them changing by less than 0.02 mm/day. Similar results are achieved for seasonal variations, with Seasonal Cycle (DJF-JJA) having no major changes in both surface temperature and precipitation.</p>


2018 ◽  
Author(s):  
Jeff K. Ridley ◽  
Edward W. Blockley

Abstract. An assessment of the risks of a seasonally ice-free arctic at 1.5 and 2.0 °C global warming above pre-industrial is undertaken using model simulations with solar radiation management to achieve the desired temperatures. An ensemble, of the CMIP5 model HadGEM2-ES, is used to reduce the internal variability and produce a probability density function of an ice-free state. It is found that the continuing loss of Arctic sea ice can be halted if the Paris Agreement temperature goal of 1.5 °C is achieved. A comparison with other methodologies and models shows that the result is robust.


2021 ◽  
pp. 196-227
Author(s):  
Eelco J. Rohling

This chapter considers solar radiation management, also known as solar geoengineering, which seeks to manipulate Earth’s climate energy balance by reducing the absorption of incoming solar energy. As the chapter explains, this approach spans a class of proposed measures that has been polarizing the community, with some advocating it as an essential means of keeping global warming within acceptable limits, while others see only grave drawbacks and dangers. The chapter describes the two approaches to limiting the absorption of solar energy: measures taken in space, between Earth and the Sun, to reflect or disperse solar radiation before it even hits Earth’s atmosphere; and measures taken in Earth’s atmosphere or at the Earth’s surface to reflect incoming solar radiation. It goes on to discuss the various proposed methods, their potential, and their drawbacks.


2018 ◽  
Vol 12 (10) ◽  
pp. 3355-3360 ◽  
Author(s):  
Jeff K. Ridley ◽  
Edward W. Blockley

Abstract. An assessment of the risks of a seasonally ice-free Arctic at 1.5 and 2.0 ∘C global warming above pre-industrial levels is undertaken using model simulations with solar radiation management to achieve the desired temperatures. An ensemble of the CMIP5 model HadGEM2-ES uses solar radiation management (SRM) to achieve the desired global mean temperatures. It is found that the risk for a seasonally ice-free Arctic is reduced for a target temperature for global warming of 1.5 ∘C (0.1 %) compared to 2.0 ∘C (42 %), in general agreement with other methodologies. The SRM produced more ice loss, for a specified global temperature, than for CO2 mitigation scenarios, as SRM produces a higher polar amplification.


Sign in / Sign up

Export Citation Format

Share Document