scholarly journals Brief Communication: The significance for the IPCC targets of 1.5 °C and 2.0 °C temperature rise for an ice-free Arctic

Author(s):  
Jeff K. Ridley ◽  
Edward W. Blockley

Abstract. An assessment of the risks of a seasonally ice-free arctic at 1.5 and 2.0 °C global warming above pre-industrial is undertaken using model simulations with solar radiation management to achieve the desired temperatures. An ensemble, of the CMIP5 model HadGEM2-ES, is used to reduce the internal variability and produce a probability density function of an ice-free state. It is found that the continuing loss of Arctic sea ice can be halted if the Paris Agreement temperature goal of 1.5 °C is achieved. A comparison with other methodologies and models shows that the result is robust.

2018 ◽  
Vol 12 (10) ◽  
pp. 3355-3360 ◽  
Author(s):  
Jeff K. Ridley ◽  
Edward W. Blockley

Abstract. An assessment of the risks of a seasonally ice-free Arctic at 1.5 and 2.0 ∘C global warming above pre-industrial levels is undertaken using model simulations with solar radiation management to achieve the desired temperatures. An ensemble of the CMIP5 model HadGEM2-ES uses solar radiation management (SRM) to achieve the desired global mean temperatures. It is found that the risk for a seasonally ice-free Arctic is reduced for a target temperature for global warming of 1.5 ∘C (0.1 %) compared to 2.0 ∘C (42 %), in general agreement with other methodologies. The SRM produced more ice loss, for a specified global temperature, than for CO2 mitigation scenarios, as SRM produces a higher polar amplification.


2012 ◽  
Vol 25 (5) ◽  
pp. 1431-1452 ◽  
Author(s):  
Alexandra Jahn ◽  
Kara Sterling ◽  
Marika M. Holland ◽  
Jennifer E. Kay ◽  
James A. Maslanik ◽  
...  

To establish how well the new Community Climate System Model, version 4 (CCSM4) simulates the properties of the Arctic sea ice and ocean, results from six CCSM4 twentieth-century ensemble simulations are compared here with the available data. It is found that the CCSM4 simulations capture most of the important climatological features of the Arctic sea ice and ocean state well, among them the sea ice thickness distribution, fraction of multiyear sea ice, and sea ice edge. The strongest bias exists in the simulated spring-to-fall sea ice motion field, the location of the Beaufort Gyre, and the temperature of the deep Arctic Ocean (below 250 m), which are caused by deficiencies in the simulation of the Arctic sea level pressure field and the lack of deep-water formation on the Arctic shelves. The observed decrease in the sea ice extent and the multiyear ice cover is well captured by the CCSM4. It is important to note, however, that the temporal evolution of the simulated Arctic sea ice cover over the satellite era is strongly influenced by internal variability. For example, while one ensemble member shows an even larger decrease in the sea ice extent over 1981–2005 than that observed, two ensemble members show no statistically significant trend over the same period. It is therefore important to compare the observed sea ice extent trend not just with the ensemble mean or a multimodel ensemble mean, but also with individual ensemble members, because of the strong imprint of internal variability on these relatively short trends.


2014 ◽  
Vol 14 (7) ◽  
pp. 10929-10999 ◽  
Author(s):  
R. Döscher ◽  
T. Vihma ◽  
E. Maksimovich

Abstract. The Arctic sea ice is the central and essential component of the Arctic climate system. The depletion and areal decline of the Arctic sea ice cover, observed since the 1970's, have accelerated after the millennium shift. While a relationship to global warming is evident and is underpinned statistically, the mechanisms connected to the sea ice reduction are to be explored in detail. Sea ice erodes both from the top and from the bottom. Atmosphere, sea ice and ocean processes interact in non-linear ways on various scales. Feedback mechanisms lead to an Arctic amplification of the global warming system. The amplification is both supported by the ice depletion and is at the same time accelerating the ice reduction. Knowledge of the mechanisms connected to the sea ice decline has grown during the 1990's and has deepened when the acceleration became clear in the early 2000's. Record summer sea ice extents in 2002, 2005, 2007 and 2012 provided additional information on the mechanisms. This article reviews recent progress in understanding of the sea ice decline. Processes are revisited from an atmospheric, ocean and sea ice perspective. There is strong evidence for decisive atmospheric changes being the major driver of sea ice change. Feedbacks due to reduced ice concentration, surface albedo and thickness allow for additional local atmosphere and ocean influences and self-supporting feedbacks. Large scale ocean influences on the Arctic Ocean hydrology and circulation are highly evident. Northward heat fluxes in the ocean are clearly impacting the ice margins, especially in the Atlantic sector of the Arctic. Only little indication exists for a direct decisive influence of the warming ocean on the overall sea ice cover, due to an isolating layer of cold and fresh water underneath the sea ice.


2021 ◽  
Author(s):  
Marco Morando

Abstract Climate Change is a widely debated scientific subject and Anthropogenic Global Warming is its main cause. Nevertheless, several authors have indicated solar activity and Atlantic Multi-decadal Oscillation variations may also influence Climate Change. This article considers the amplification of solar radiation’s and Atlantic Multi-decadal Oscillation’s variations, via sea ice cover albedo feedbacks in the Arctic regions, providing a conceptual advance in the application of Arctic Amplification for modelling historical climate change. A 1-dimensional physical model, using sunspot number count and Atlantic Multi-decadal Oscillation index as inputs, can simulate the average global temperature’s anomaly and the Arctic Sea Ice Extension for the past eight centuries. This model represents an innovative progress in understanding how existing studies on Arctic sea ice’s albedo feedbacks can help complementing the Anthropogenic Global Warming models, thus helping to define more precise models for future climate change.


Author(s):  
Mark Maslin

‘Evidence for climate change’ considers both past and recent climate change through changes in temperature, precipitation, and relative global sea level to show that significant changes in climate have been recorded. These include a 0.85°Celsius (C) increase in average global temperatures over the last 150 years, sea-level rise of over 20 cm, significant shifts in the seasonality and intensities of precipitation, changing weather patterns, and significant retreat of Arctic sea ice and nearly all continental glaciers. The IPCC 2013 report states that the evidence for global warming is unequivocal and that there is very high confidence that this warming is due to human emissions of greenhouse gases.


2020 ◽  
Vol 103 (2) ◽  
pp. 2617-2621 ◽  
Author(s):  
Juhi Yadav ◽  
Avinash Kumar ◽  
Rahul Mohan

Sign in / Sign up

Export Citation Format

Share Document