scholarly journals Haze Prediction Model Using Deep Recurrent Neural Network

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1625
Author(s):  
Kailin Shang ◽  
Ziyi Chen ◽  
Zhixin Liu ◽  
Lihong Song ◽  
Wenfeng Zheng ◽  
...  

In recent years, haze pollution is frequent, which seriously affects daily life and production process. The main factors to measure the degree of smoke pollution are the concentrations of PM2.5 and PM10. Therefore, it is of great significance to study the prediction of PM2.5/PM10 concentration. Since PM2.5 and PM10 concentration data are time series, their time characteristics should be considered in their prediction. However, the traditional neural network is limited by its own structure and has some weakness in processing time related data. Recurrent neural network is a kind of network specially used for sequence data modeling, that is, the current output of the sequence is correlated with the historical output. In this paper, a haze prediction model is established based on a deep recurrent neural network. We obtained air pollution data in Chengdu from the China Air Quality Online Monitoring and Analysis Platform, and conducted experiments based on these data. The results show that the new method can predict smog more effectively and accurately, and can be used for social and economic purposes.

2021 ◽  
Vol 12 ◽  
Author(s):  
Sharath Koorathota ◽  
Kaveri Thakoor ◽  
Linbi Hong ◽  
Yaoli Mao ◽  
Patrick Adelman ◽  
...  

There is increasing interest in how the pupil dynamics of the eye reflect underlying cognitive processes and brain states. Problematic, however, is that pupil changes can be due to non-cognitive factors, for example luminance changes in the environment, accommodation and movement. In this paper we consider how by modeling the response of the pupil in real-world environments we can capture the non-cognitive related changes and remove these to extract a residual signal which is a better index of cognition and performance. Specifically, we utilize sequence measures such as fixation position, duration, saccades, and blink-related information as inputs to a deep recurrent neural network (RNN) model for predicting subsequent pupil diameter. We build and evaluate the model for a task where subjects are watching educational videos and subsequently asked questions based on the content. Compared to commonly-used models for this task, the RNN had the lowest errors rates in predicting subsequent pupil dilation given sequence data. Most importantly was how the model output related to subjects' cognitive performance as assessed by a post-viewing test. Consistent with our hypothesis that the model captures non-cognitive pupil dynamics, we found (1) the model's root-mean square error was less for lower performing subjects than for those having better performance on the post-viewing test, (2) the residuals of the RNN (LSTM) model had the highest correlation with subject post-viewing test scores and (3) the residuals had the highest discriminability (assessed via area under the ROC curve, AUC) for classifying high and low test performers, compared to the true pupil size or the RNN model predictions. This suggests that deep learning sequence models may be good for separating components of pupil responses that are linked to luminance and accommodation from those that are linked to cognition and arousal.


2020 ◽  
Vol 182 ◽  
pp. 02007
Author(s):  
Chuanjun Pang ◽  
Tie Bao ◽  
Lei He

Power system load forecasting plays an important role in the power dispatching operation. The development of the electricity market and the increasing integration of distributed generators have increased the complexity of power consumption model and put forward higher requirements for the accuracy and stability of load forecasting. A load forecasting method based on long-short term memory (LSTM) is proposed. This method uses deep recurrent neural network from the artificial intelligence field to establish a load forecasting model. Using the LSTM network to memorize the long-term dependence of the sequence data, the intrinsic variation of the load itself is identified from both the horizontal and vertical dimensions within a longer historical time period, while considering various influencing factors. Actual load data is used to verify the forecasting performance of different historical date windows and different network architectures.


2020 ◽  
Author(s):  
Ramachandro Majji

BACKGROUND Cancer is one of the deadly diseases prevailing worldwide and the patients with cancer are rescued only when the cancer is detected at the very early stage. Early detection of cancer is essential as, in the final stage, the chance of survival is limited. The symptoms of cancers are rigorous and therefore, all the symptoms should be studied properly before the diagnosis. OBJECTIVE Propose an automatic prediction system for classifying cancer to malignant or benign. METHODS This paper introduces the novel strategy based on the JayaAnt lion optimization-based Deep recurrent neural network (JayaALO-based DeepRNN) for cancer classification. The steps followed in the developed model are data normalization, data transformation, feature dimension detection, and classification. The first step is the data normalization. The goal of data normalization is to eliminate data redundancy and to mitigate the storage of objects in a relational database that maintains the same information in several places. After that, the data transformation is carried out based on log transformation that generates the patterns using more interpretable and helps fulfill the supposition, and to reduce skew. Also, the non-negative matrix factorization is employed for reducing the feature dimension. Finally, the proposed JayaALO-based DeepRNN method effectively classifies cancer-based on the reduced dimension features to produce a satisfactory result. RESULTS The proposed JayaALO-based DeepRNN showed improved results with maximal accuracy of 95.97%, the maximal sensitivity of 95.95%, and the maximal specificity of 96.96%. CONCLUSIONS The resulted output of the proposed JayaALO-based DeepRNN is used for cancer classification.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6460
Author(s):  
Dae-Yeon Kim ◽  
Dong-Sik Choi ◽  
Jaeyun Kim ◽  
Sung Wan Chun ◽  
Hyo-Wook Gil ◽  
...  

In this study, we propose a personalized glucose prediction model using deep learning for hospitalized patients who experience Type-2 diabetes. We aim for our model to assist the medical personnel who check the blood glucose and control the amount of insulin doses. Herein, we employed a deep learning algorithm, especially a recurrent neural network (RNN), that consists of a sequence processing layer and a classification layer for the glucose prediction. We tested a simple RNN, gated recurrent unit (GRU), and long-short term memory (LSTM) and varied the architectures to determine the one with the best performance. For that, we collected data for a week using a continuous glucose monitoring device. Type-2 inpatients are usually experiencing bad health conditions and have a high variability of glucose level. However, there are few studies on the Type-2 glucose prediction model while many studies performed on Type-1 glucose prediction. This work has a contribution in that the proposed model exhibits a comparative performance to previous works on Type-1 patients. For 20 in-hospital patients, we achieved an average root mean squared error (RMSE) of 21.5 and an Mean absolute percentage error (MAPE) of 11.1%. The GRU with a single RNN layer and two dense layers was found to be sufficient to predict the glucose level. Moreover, to build a personalized model, at most, 50% of data are required for training.


Sign in / Sign up

Export Citation Format

Share Document