scholarly journals The Role of Vacuum Fluctuations and Symmetry in the Hydrogen Atom in Quantum Mechanics and Stochastic Electrodynamics

Atoms ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 39
Author(s):  
G. Maclay

Stochastic Electrodynamics (SED) has had success modeling black body radiation, the harmonic oscillator, the Casimir effect, van der Waals forces, diamagnetism, and uniform acceleration of electrodynamic systems using the stochastic zero-point fluctuations of the electromagnetic field with classical mechanics. However the hydrogen atom, with its 1/r potential remains a critical challenge. Numerical calculations have shown that the SED field prevents the electron orbit from collapsing into the proton, but, eventually the atom becames ionized. We look at the issues of the H atom and SED from the perspective of symmetry of the quantum mechanical Hamiltonian, used to obtain the quantum mechanical results, and the Abraham-Lorentz equation, which is a force equation that includes the effects of radiation reaction, and is used to obtain the SED simulations. We contrast the physical computed effects of the quantized electromagnetic vacuum fluctuations with the role of the real stochastic electromagnetic field.

Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2183
Author(s):  
Ryan C. Fortenberry ◽  
Laurent Wiesenfeld

HeHHe + is the only potential molecule comprised of atoms present in the early universe that is also easily observable in the infrared. This molecule has been known to exist in mass spectrometry experiments for nearly half-a-century and is likely present, but as-of-yet unconfirmed, in cold plasmas. There can exist only a handful of plausible primordial molecules in the epochs before metals (elements with nuclei heavier than 4 He as astronomers call them) were synthesized in the universe, and most of these are both rotationally and vibrationally dark. The current work brings HeHHe + into the discussion as a possible (and potentially only) molecular candle for probing high-z and any metal-deprived regions due to its exceptionally bright infrared feature previously predicted to lie at 7.43 μ m. Furthermore, the present study provides new insights into its possible formation mechanisms as well as marked stability, along with the decisive role of anharmonic zero-point energies. A new entrance pathway is proposed through the triplet state ( 3 B 1 ) of the He 2 H + molecule complexed with a hydrogen atom and a subsequent 10.90 eV charge transfer/photon emission into the linear and vibrationally-bright 1 Σ g + HeHHe + form.


1949 ◽  
Vol 45 (3) ◽  
pp. 452-462 ◽  
Author(s):  
Kun Huang

In Ewald's theory of crystal optics, based on classical principles, an optical wave through a crystal lattice of polarizable atoms (idealized as isotropic oscillators) is a self-sustaining system of vibrations so constituted that, on the one hand, the electric moment of each atom is caused to oscillate by the electromagnetic field and, on the other hand, the electromagnetic field is itself the resultant field due to the superposition of the dipole waves produced by the lattice atoms. Born extended the theory to the case of movable lattice ions and showed that in an optical wave the electromagnetic field is so coupled to the lattice vibrations that each lattice ion vibrates in phase with the local field which, as in Ewald's case, is itself produced by the vibrating ions. In Born's original theory, the motion of the lattice particles had to be treated by classical mechanics. It is shown that the results of the quantum-mechanical treatment of the lattice motion agrees exactly with the classical theory. Not only is the induced current at each lattice point in phase with the local field, but the magnitude of the current is also identical with the classical value, completely independent of whichever vibrational state the crystal might be in.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 852
Author(s):  
Charles Wang ◽  
Melania Mieczkowska

Zero-point fluctuations are a universal consequence of quantum theory. Vacuum fluctuations of electromagnetic field have provided crucial evidence and guidance for QED as a successful quantum field theory with a defining gauge symmetry through the Lamb shift, Casimir effect, and spontaneous emission. In an accelerated frame, the thermalisation of the zero-point electromagnetic field gives rise to the Unruh effect linked to the Hawking effect of a black hole via the equivalence principle. This principle is the basis of general covariance, the symmetry of general relativity as the classical theory of gravity. If quantum gravity exists, the quantum vacuum fluctuations of the gravitational field should also lead to the quantum decoherence and dissertation of general forms of energy and matter. Here we present a novel theoretical effect involving the spontaneous emission of soft gravitons by photons as they bend around a heavy mass and discuss its observational prospects. Our analytic and numerical investigations suggest that the gravitational bending of starlight predicted by classical general relativity should also be accompanied by the emission of gravitational waves. This in turn redshifts the light causing a loss of its energy somewhat analogous to the bremsstrahlung of electrons by a heavier charged particle. It is suggested that this new effect may be important for a combined astronomical source of intense gravity and high-frequency radiation such as X-ray binaries and that the proposed LISA mission may be potentially sensitive to the resulting sub-Hz stochastic gravitational waves.


Author(s):  
Xiaowen Tong

A new approach is proposed for evaluating the interaction energy between the electron and the vacuum fluctuations of electromagnetic field. It is applied to two cases: when the electron is free and when it is in a potential-a hydrogen atom. The results are consistent with previous relevant treatments of people.


Author(s):  
Xiaowen Tong

A new approach is proposed for evaluating the interaction energy between the electron and the vacuum fluctuations of electromagnetic field. It is applied to two cases: when the electron is free and when it is in a potential-a hydrogen atom. The results are consistent with previous relevant treatments of people.


2019 ◽  
Author(s):  
Riccardo Spezia ◽  
Hichem Dammak

<div> <div> <div> <p>In the present work we have investigated the possibility of using the Quantum Thermal Bath (QTB) method in molecular simulations of unimolecular dissociation processes. Notably, QTB is aimed in introducing quantum nuclear effects with a com- putational time which is basically the same as in newtonian simulations. At this end we have considered the model fragmentation of CH4 for which an analytical function is present in the literature. Moreover, based on the same model a microcanonical algorithm which monitor zero-point energy of products, and eventually modifies tra- jectories, was recently proposed. We have thus compared classical and quantum rate constant with these different models. QTB seems to correctly reproduce some quantum features, in particular the difference between classical and quantum activation energies, making it a promising method to study unimolecular fragmentation of much complex systems with molecular simulations. The role of QTB thermostat on rotational degrees of freedom is also analyzed and discussed. </p> </div> </div> </div>


2021 ◽  
Vol 51 (1) ◽  
Author(s):  
Andrei Khrennikov

AbstractWe present a quantum mechanical (QM) analysis of Bell’s approach to quantum foundations based on his hidden-variable model. We claim and try to justify that the Bell model contradicts to the Heinsenberg’s uncertainty and Bohr’s complementarity principles. The aim of this note is to point to the physical seed of the aforementioned principles. This is the Bohr’s quantum postulate: the existence of indivisible quantum of action given by the Planck constant h. By contradicting these basic principles of QM, Bell’s model implies rejection of this postulate as well. Thus, this hidden-variable model contradicts not only the QM-formalism, but also the fundamental feature of the quantum world discovered by Planck.


2017 ◽  
Vol 139 ◽  
pp. 84-88 ◽  
Author(s):  
S. Samaneh Ataei ◽  
S. Javad Hashemifar ◽  
Mohammad Reza Mohammadizadeh

Sign in / Sign up

Export Citation Format

Share Document