scholarly journals An Item–Item Collaborative Filtering Recommender System Using Trust and Genre to Address the Cold-Start Problem

2019 ◽  
Vol 3 (3) ◽  
pp. 39 ◽  
Author(s):  
Mahamudul Hasan ◽  
Falguni Roy

Item-based collaborative filtering is one of the most popular techniques in the recommender system to retrieve useful items for the users by finding the correlation among the items. Traditional item-based collaborative filtering works well when there exists sufficient rating data but cannot calculate similarity for new items, known as a cold-start problem. Usually, for the lack of rating data, the identification of the similarity among the cold-start items is difficult. As a result, existing techniques fail to predict accurate recommendations for cold-start items which also affects the recommender system’s performance. In this paper, two item-based similarity measures have been designed to overcome this problem by incorporating items’ genre data. An item might be uniform to other items as they might belong to more than one common genre. Thus, one of the similarity measures is defined by determining the degree of direct asymmetric correlation between items by considering their association of common genres. However, the similarity is determined between a couple of items where one of the items could be cold-start and another could be any highly rated item. Thus, the proposed similarity measure is accounted for as asymmetric by taking consideration of the item’s rating data. Another similarity measure is defined as the relative interconnection between items based on transitive inference. In addition, an enhanced prediction algorithm has been proposed so that it can calculate a better prediction for the recommendation. The proposed approach has experimented with two popular datasets that is Movielens and MovieTweets. In addition, it is found that the proposed technique performs better in comparison with the traditional techniques in a collaborative filtering recommender system. The proposed approach improved prediction accuracy for Movielens and MovieTweets approximately in terms of 3.42% & 8.58% mean absolute error, 7.25% & 3.29% precision, 7.20% & 7.55% recall, 8.76% & 5.15% f-measure and 49.3% and 16.49% mean reciprocal rank, respectively.

2020 ◽  
Vol 149 ◽  
pp. 113248 ◽  
Author(s):  
Senthilselvan Natarajan ◽  
Subramaniyaswamy Vairavasundaram ◽  
Sivaramakrishnan Natarajan ◽  
Amir H. Gandomi

2019 ◽  
Vol 9 (9) ◽  
pp. 1894 ◽  
Author(s):  
Zhi-Peng Zhang ◽  
Yasuo Kudo ◽  
Tetsuya Murai ◽  
Yong-Gong Ren

Recommender system (RS) can be used to provide personalized recommendations based on the different tastes of users. Item-based collaborative filtering (IBCF) has been successfully applied to modern RSs because of its excellent performance, but it is susceptible to the new item cold-start problem, especially when a new item has no rating records (complete new item cold-start). Motivated by this, we propose a niche approach which applies interrelationship mining into IBCF in this paper. The proposed approach utilizes interrelationship mining to extract new binary relations between each pair of item attributes, and constructs interrelated attributes to rich the available information on a new item. Further, similarity, computed using interrelated attributes, can reflect characteristics between new items and others more accurately. Some significant properties, as well as the usage of interrelated attributes, are provided in detail. Experimental results obtained suggest that the proposed approach can effectively solve the complete new item cold-start problem of IBCF and can be used to provide new item recommendations with satisfactory accuracy and diversity in modern RSs.


2021 ◽  
pp. 1-19
Author(s):  
Lyes Badis ◽  
Mourad Amad ◽  
Djamil Aïssani ◽  
Sofiane Abbar

The recent privacy incidents reported in major media about global social networks raised real public concerns about centralized architectures. P2P social networks constitute an interesting paradigm to give back users control over their data and relations. While basic social network functionalities such as commenting, following, sharing, and publishing content are widely available, more advanced features related to information retrieval and recommendation are still challenging. This is due to the absence of a central server that has a complete view of the network. In this paper, we propose a new recommender system called P2PCF. We use collaborative filtering approach to recommend content in P2P social networks. P2PCF enables privacy preserving and tackles the cold start problem for both users and content. Our proposed approach assumes that the rating matrix is distributed within peers, in such a way that each peer only sees interactions made by her friends on her timeline. Recommendations are then computed locally within each peer before they are sent back to the requester. Our evaluations prove the effectiveness of our proposal compared to a centralized scheme in terms of recall and coverage.


2016 ◽  
Vol 43 (1) ◽  
pp. 135-144 ◽  
Author(s):  
Mehdi Hosseinzadeh Aghdam ◽  
Morteza Analoui ◽  
Peyman Kabiri

Recommender systems have been widely used for predicting unknown ratings. Collaborative filtering as a recommendation technique uses known ratings for predicting user preferences in the item selection. However, current collaborative filtering methods cannot distinguish malicious users from unknown users. Also, they have serious drawbacks in generating ratings for cold-start users. Trust networks among recommender systems have been proved beneficial to improve the quality and number of predictions. This paper proposes an improved trust-aware recommender system that uses resistive circuits for trust inference. This method uses trust information to produce personalized recommendations. The result of evaluating the proposed method on Epinions dataset shows that this method can significantly improve the accuracy of recommender systems while not reducing the coverage of recommender systems.


2015 ◽  
Vol 14 (9) ◽  
pp. 6118-6128 ◽  
Author(s):  
T. Srikanth ◽  
M. Shashi

Collaborative filtering is a popular approach in recommender Systems that helps users in identifying the items they may like in a wagon of items. Finding similarity among users with the available item ratings so as to predict rating(s) for unseen item(s) based on the preferences of likeminded users for the current user is a challenging problem. Traditional measures like Cosine similarity and Pearson correlation’s correlation exhibit some drawbacks in similarity calculation. This paper presents a new similarity measure which improves the performance of Recommender System. Experimental results on MovieLens dataset show that our proposed distance measure improves the quality of prediction. We present clustering results as an extension to validate the effectiveness of our proposed method.


Sign in / Sign up

Export Citation Format

Share Document