scholarly journals Construction of a Three-Color Prism-Based TIRF Microscope to Study the Interactions and Dynamics of Macromolecules

Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 571
Author(s):  
Max S. Fairlamb ◽  
Amy M. Whitaker ◽  
Fletcher E. Bain ◽  
Maria Spies ◽  
Bret D. Freudenthal

Single-molecule total internal reflection fluorescence (TIRF) microscopy allows for the real-time visualization of macromolecular dynamics and complex assembly. Prism-based TIRF microscopes (prismTIRF) are relatively simple to operate and can be easily modulated to fit the needs of a wide variety of experimental applications. While building a prismTIRF microscope without expert assistance can pose a significant challenge, the components needed to build a prismTIRF microscope are relatively affordable and, with some guidance, the assembly can be completed by a determined novice. Here, we provide an easy-to-follow guide for the design, assembly, and operation of a three-color prismTIRF microscope which can be utilized for the study of macromolecular complexes, including the multi-component protein–DNA complexes responsible for DNA repair, replication, and transcription. Our hope is that this article can assist laboratories that aspire to implement single-molecule TIRF techniques, and consequently expand the application of this technology.

2021 ◽  
Author(s):  
Max S Fairlamb ◽  
Amy M Whitaker ◽  
Fletcher E Bain ◽  
Maria Spies ◽  
Bret D Freudenthal

Single-molecule total internal reflection fluorescence (TIRF) microscopy allows for realtime visualization of macromolecular dynamics and complex assembly. Prism-based TIRF microscopes (prismTIRF) are relatively simple to operate and can be easily modulated to fit the needs of a wide variety of experimental applications. While building a prismTIRF microscope without expert assistance can pose a significant challenge, the components needed to build a prismTIRF microscope are relatively affordable and, with some guidance, the assembly can be completed by a determined novice. Here, we provide an easy-to-follow guide for the design, assembly, and oper-ation of a 3-color prismTIRF microscope which can be utilized for the study macromolecular complexes, including the multi-component protein-DNA complexes responsible for DNA repair, replication, and transcription. Our hope is that this article can assist laboratories that aspire to implement single-molecule TIRF techniques, and consequently expand the application of this technology to a broader spectrum of scientific questions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Elina Ly ◽  
Jennifer F. Kugel ◽  
James A. Goodrich

Abstract The tumor suppressor protein p53 is critical for cell fate decisions, including apoptosis, senescence, and cell cycle arrest. p53 is a tetrameric transcription factor that binds DNA response elements to regulate transcription of target genes. p53 response elements consist of two decameric half-sites, and data suggest one p53 dimer in the tetramer binds to each half-site. Despite a broad literature describing p53 binding DNA, unanswered questions remain, due partly to the need for more quantitative and structural studies with full length protein. Here we describe a single molecule fluorescence system to visualize full length p53 tetramers binding DNA in real time. The data revealed a dynamic interaction in which tetrameric p53/DNA complexes assembled and disassembled without a dimer/DNA intermediate. On a wild type DNA containing two half sites, p53/DNA complexes existed in two kinetically distinct populations. p53 tetramers bound response elements containing only one half site to form a single population of complexes with reduced kinetic stability. Altering the spacing and helical phasing between two half sites affected both the population distribution of p53/DNA complexes and their kinetic stability. Our real time single molecule measurements of full length p53 tetramers binding DNA reveal the parameters that define the stability of p53/DNA complexes, and provide insight into the pathways by which those complexes assemble.


2020 ◽  
Vol 295 (27) ◽  
pp. 9012-9020
Author(s):  
Carel Fijen ◽  
Mariam M. Mahmoud ◽  
Meike Kronenberg ◽  
Rebecca Kaup ◽  
Mattia Fontana ◽  
...  

Eukaryotic DNA polymerase β (Pol β) plays an important role in cellular DNA repair, as it fills short gaps in dsDNA that result from removal of damaged bases. Since defects in DNA repair may lead to cancer and genetic instabilities, Pol β has been extensively studied, especially its mechanisms for substrate binding and a fidelity-related conformational change referred to as “fingers closing.” Here, we applied single-molecule FRET to measure distance changes associated with DNA binding and prechemistry fingers movement of human Pol β. First, using a doubly labeled DNA construct, we show that Pol β bends the gapped DNA substrate less than indicated by previously reported crystal structures. Second, using acceptor-labeled Pol β and donor-labeled DNA, we visualized dynamic fingers closing in single Pol β-DNA complexes upon addition of complementary nucleotides and derived rates of conformational changes. We further found that, while incorrect nucleotides are quickly rejected, they nonetheless stabilize the polymerase-DNA complex, suggesting that Pol β, when bound to a lesion, has a strong commitment to nucleotide incorporation and thus repair. In summary, the observation and quantification of fingers movement in human Pol β reported here provide new insights into the delicate mechanisms of prechemistry nucleotide selection.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Susannah F. Calhoun ◽  
Jake Reed ◽  
Noah Alexander ◽  
Christopher E. Mason ◽  
Kirk W. Deitsch ◽  
...  

ABSTRACT The human malaria parasite Plasmodium falciparum replicates within circulating red blood cells, where it is subjected to conditions that frequently cause DNA damage. The repair of DNA double-stranded breaks (DSBs) is thought to rely almost exclusively on homologous recombination (HR), due to a lack of efficient nonhomologous end joining. However, given that the parasite is haploid during this stage of its life cycle, the mechanisms involved in maintaining genome stability are poorly understood. Of particular interest are the subtelomeric regions of the chromosomes, which contain the majority of the multicopy variant antigen-encoding genes responsible for virulence and disease severity. Here, we show that parasites utilize a competitive balance between de novo telomere addition, also called “telomere healing,” and HR to stabilize chromosome ends. Products of both repair pathways were observed in response to DSBs that occurred spontaneously during routine in vitro culture or resulted from experimentally induced DSBs, demonstrating that both pathways are active in repairing DSBs within subtelomeric regions and that the pathway utilized was determined by the DNA sequences immediately surrounding the break. In combination, these two repair pathways enable parasites to efficiently maintain chromosome stability while also contributing to the generation of genetic diversity. IMPORTANCE Malaria is a major global health threat, causing approximately 430,000 deaths annually. This mosquito-transmitted disease is caused by Plasmodium parasites, with infection with the species Plasmodium falciparum being the most lethal. Mechanisms underlying DNA repair and maintenance of genome integrity in P. falciparum are not well understood and represent a gap in our understanding of how parasites survive the hostile environment of their vertebrate and insect hosts. Our work examines DNA repair in real time by using single-molecule real-time (SMRT) sequencing focused on the subtelomeric regions of the genome that harbor the multicopy gene families important for virulence and the maintenance of infection. We show that parasites utilize two competing molecular mechanisms to repair double-strand breaks, homologous recombination and de novo telomere addition, with the pathway used being determined by the surrounding DNA sequence. In combination, these two pathways balance the need to maintain genome stability with the selective advantage of generating antigenic diversity. IMPORTANCE Malaria is a major global health threat, causing approximately 430,000 deaths annually. This mosquito-transmitted disease is caused by Plasmodium parasites, with infection with the species Plasmodium falciparum being the most lethal. Mechanisms underlying DNA repair and maintenance of genome integrity in P. falciparum are not well understood and represent a gap in our understanding of how parasites survive the hostile environment of their vertebrate and insect hosts. Our work examines DNA repair in real time by using single-molecule real-time (SMRT) sequencing focused on the subtelomeric regions of the genome that harbor the multicopy gene families important for virulence and the maintenance of infection. We show that parasites utilize two competing molecular mechanisms to repair double-strand breaks, homologous recombination and de novo telomere addition, with the pathway used being determined by the surrounding DNA sequence. In combination, these two pathways balance the need to maintain genome stability with the selective advantage of generating antigenic diversity.


Sign in / Sign up

Export Citation Format

Share Document