scholarly journals Powdery Mildew Resistance Phenotypes of Wheat Gene Bank Accessions

Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 846
Author(s):  
Antonín Dreiseitl

Powdery mildew (Blumeria graminis f. sp. tritici) is a common pathogen of bread wheat (Triticum aestivum L.), and genetic resistance is an effective and environmentally friendly method to reduce its adverse impact. The introgression of novel genes from wheat progenitors and related species can increase the diversity of disease resistance and accumulation of minor genes to improve the crop’s resistance durability. To accomplish these two actions, host genotypes without major resistances should be preferably used. Therefore, the main aim of this study was to carry out seedling tests to detect such resistances in a set of wheat accessions from the Czech gene bank and to group the cultivars according to their phenotype. Ear progenies of 448 selected cultivars originating from 33 countries were inoculated with three isolates of the pathogen. Twenty-eight cultivars were heterogeneous, and 110 cultivars showed resistance to at least one isolate. Fifty-nine cultivars, mostly from Northwest Europe, were resistant to all three isolates were more than three times more frequently recorded in spring than in winter cultivars. Results will facilitate a rational and practical approach preferably using the set of cultivars without major resistances for both mentioned methods of breeding wheat cultivars resistant to powdery mildew.

Author(s):  
Reginah Pheirim ◽  
Noren Singh Konjengbam ◽  
Mayurakshee Mahanta

Powdery mildew is caused by an obligate parasite Erysiphe pisi and considered as one of the most important constraints causing yield reductions in pea. Development and utilization of genetic resistance is acknowledged as the most effective, economic and environmental friendly method of control. Therefore, development of cultivars with improved resistance to biotic stresses is a primary goal of plant breeding programs throughout the world. Three monogenic sources er1, er2 and Er3 have been described to govern the powdery mildew disease resistance. Several markers have been reported linked to resistant genes at varying distances in different mapping populations. Genetic markers linked to the disease resistance gene make the breeding process more efficient for the use of Marker Assisted Selection (MAS) strategy to aid in obtaining a complete powdery mildew resistance in pea.


Genome ◽  
2010 ◽  
Vol 53 (12) ◽  
pp. 1053-1065 ◽  
Author(s):  
Vijay K. Tiwari ◽  
Nidhi Rawat ◽  
Kumari Neelam ◽  
Sundip Kumar ◽  
Gursharn S. Randhawa ◽  
...  

Synthetic amphiploids are the immortal sources for studies on crop evolution, genome dissection, and introgression of useful variability from related species. Cytological analysis of synthetic decaploid wheat ( Triticum aestivum L.) –   Aegilops kotschyi Boiss. amphiploids (AABBDDUkUkSkSk) showed some univalents from the C1 generation onward followed by chromosome elimination. Most of the univalents came to metaphase I plate after the reductional division of paired chromosomes and underwent equational division leading to their elimination through laggards and micronuclei. Substantial variation in the chromosome number of pollen mother cells from different tillers, spikelets, and anthers of some plants also indicated somatic chromosome elimination. Genomic in situ hybridization, fluorescence in situ hybridization, and simple sequence repeat markers analysis of two amphiploids with reduced chromosomes indicated random chromosome elimination of various genomes with higher sensitivity of D followed by the Sk and Uk genomes to elimination, whereas 1D chromosome was preferentially eliminated in both the amphiploids investigated. One of the partial amphiploids, C4 T. aestivum ‘Chinese Spring’ – Ae. kotschyi 396 (2n = 58), with 34 T. aestivum, 14 Uk, and 10 Sk had stable meiosis and high fertility. The partial amphiploids with white glumes, bold seeds, and tough rachis with high grain macro- and micronutrients and resistance to powdery mildew could be used for T. aestivum biofortification and transfer of powdery mildew resistance.


2016 ◽  
Vol 129 (6) ◽  
pp. 1127-1137 ◽  
Author(s):  
I. N. Bheema Lingeswara Reddy ◽  
K. Chandrasekhar ◽  
Y. Zewdu ◽  
A. Dinoor ◽  
B. Keller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document