scholarly journals Mapping the Energetic Costs of Free-Swimming Gilthead Sea Bream (Sparus aurata), a Key Species in European Marine Aquaculture

Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1357
Author(s):  
Sébastien Alfonso ◽  
Walter Zupa ◽  
Maria Teresa Spedicato ◽  
Giuseppe Lembo ◽  
Pierluigi Carbonara

Measurement of metabolic rates provides a valuable proxy for the energetic costs of different living activities. However, such measurements are not easy to perform in free-swimming fish. Therefore, mapping acceleration from accelerometer tags with oxygen consumption rates (MO2) is a promising method to counter these limitations and could represent a tool for remotely estimating MO2 in aquaculture environments. In this study, we monitored the swimming performance and MO2 of 79 gilthead sea bream (Sparus aurata; weight range, 219–971 g) during a critical swimming test. Among all the fish challenged, 27 were implanted with electromyography (EMG) electrodes, and 27 were implanted with accelerometer tags to monitor the activation pattern of the red/white muscles during swimming. Additionally, we correlated the acceleration recorded by the tag with the MO2. Overall, we found no significant differences in swimming performance, metabolic traits, and swimming efficiency between the tagged and untagged fish. The acceleration recorded by the tag was successfully correlated with MO2. Additionally, through EMG analyses, we determined the activities of the red and white muscles, which are indicative of the contributions of aerobic and anaerobic metabolisms until reaching critical swimming speed. By obtaining insights into both aerobic and anaerobic metabolisms, sensor mapping with physiological data may be useful for the purposes of aquaculture health/welfare remote monitoring of the gilthead sea bream, a key species in European marine aquaculture.

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Heiner Kuhl ◽  
Elena Sarropoulou ◽  
Mbaye Tine ◽  
Georgios Kotoulas ◽  
Antonios Magoulas ◽  
...  

This study presents the first comparative BAC map of the gilthead sea bream (Sparus aurata), a highly valuated marine aquaculture fish species in the Mediterranean. High-throughput end sequencing of a BAC library yielded 92,468 reads (60.6 Mbp). Comparative mapping was achieved by anchoring BAC end sequences to the three-spined stickleback (Gasterosteus aculeatus) genome. BACs that were consistently ordered along the stickleback chromosomes accounted for 14,265 clones. A fraction of 5,249 BACs constituted a minimal tiling path that covers 73.5% of the stickleback chromosomes and 70.2% of the genes that have been annotated. The N50 size of 1,485 “BACtigs” consisting of redundant BACs is 337,253 bp. The largest BACtig covers 2.15 Mbp in the stickleback genome. According to the insert size distribution of mapped BACs the sea bream genome is 1.71-fold larger than the stickleback genome. These results represent a valuable tool to researchers in the field and may support future projects to elucidate the whole sea bream genome.


Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 416
Author(s):  
Fernando Naya-Català ◽  
Juan A. Martos-Sitcha ◽  
Verónica de las Heras ◽  
Paula Simó-Mirabet ◽  
Josep À. Calduch-Giner ◽  
...  

On-growing juveniles of gilthead sea bream were acclimated for 45 days to mild-hypoxia (M-HYP, 40–60% O2 saturation), whereas normoxic fish (85–90% O2 saturation) constituted two different groups, depending on if they were fed to visual satiety (control fish) or pair-fed to M-HYP fish. Following the hypoxia conditioning period, all fish were maintained in normoxia and continued to be fed until visual satiation for 3 weeks. The time course of hypoxia-induced changes was assessed by changes in blood metabolic landmarks and muscle transcriptomics before and after exhaustive exercise in a swim tunnel respirometer. In M-HYP fish, our results highlighted a higher contribution of aerobic metabolism to whole energy supply, shifting towards a higher anaerobic fitness following normoxia restoration. Despite these changes in substrate preference, M-HYP fish shared a persistent improvement in swimming performance with a higher critical speed at exercise exhaustion. The machinery of muscle contraction and protein synthesis and breakdown was also largely altered by mild-hypoxia conditioning, contributing this metabolic re-adjustment to the positive regulation of locomotion and to the catch-up growth response during the normoxia recovery period. Altogether, these results reinforce the presence of large phenotypic plasticity in gilthead sea bream, and highlights mild-hypoxia as a promising prophylactic measure to prepare these fish for predictable stressful events.


2018 ◽  
Vol 24 (6) ◽  
pp. 1638-1651 ◽  
Author(s):  
Juan Antonio Martos‐Sitcha ◽  
Paula Simó‐Mirabet ◽  
María Carla Piazzon ◽  
Verónica las Heras ◽  
Josep Alvar Calduch‐Giner ◽  
...  

2007 ◽  
Vol 38 (5) ◽  
pp. 452-456 ◽  
Author(s):  
Fatih Basaran ◽  
Huseyin Ozbilgin ◽  
Yeliz Doganyilmaz Ozbilgin

2018 ◽  
Vol 127 (3) ◽  
pp. 201-211 ◽  
Author(s):  
M Moreira ◽  
M Herrera ◽  
P Pousão-Ferreira ◽  
JI Navas Triano ◽  
F Soares

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 362
Author(s):  
Amparo Picard-Sánchez ◽  
M. Carla Piazzon ◽  
Itziar Estensoro ◽  
Raquel Del Pozo ◽  
Nahla Hossameldin Ahmed ◽  
...  

Enterospora nucleophila is a microsporidian enteroparasite that infects mainly the intestine of gilthead sea bream (Sparus aurata), leading to an emaciative syndrome. Thus far, the only available information about this infection comes from natural outbreaks in farmed fish. The aim of the present study was to determine whether E. nucleophila could be transmitted horizontally using naturally infected fish as donors, and to establish an experimental in vivo procedure to study this host–parasite model without depending on natural infections. Naïve fish were exposed to the infection by cohabitation, effluent, or intubated either orally or anally with intestinal scrapings of donor fish in four different trials. We succeeded in detecting parasite in naïve fish in all the challenges, but the infection level and the disease signs were always milder than in donor fish. The parasite was found in peripheral blood of naïve fish at 4 weeks post-challenge (wpc) in oral and effluent routes, and up to 12 wpc in the anal transmission trial. Molecular diagnosis detected E. nucleophila in other organs besides intestine, such as gills, liver, stomach or heart, although the intensity was not as high as in the target tissue. The infection tended to disappear through time in all the challenge routes assayed, except in the anal infection route.


Aquaculture ◽  
2021 ◽  
pp. 736605
Author(s):  
A. Toffan ◽  
L. Biasini ◽  
T. Pretto ◽  
M. Abbadi ◽  
A. Buratin ◽  
...  

1997 ◽  
Vol 287 (3) ◽  
pp. 535-540 ◽  
Author(s):  
Josep Alvar Calduch-Giner ◽  
Ariadna Sitjà-Bobadilla ◽  
Pilar Alvarez-Pellitero ◽  
Jaume Pérez-Sánchez

Sign in / Sign up

Export Citation Format

Share Document