scholarly journals Selectable Markers and Reporter Genes for Engineering the Chloroplast of Chlamydomonas reinhardtii

Biology ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 46 ◽  
Author(s):  
Lola Esland ◽  
Marco Larrea-Alvarez ◽  
Saul Purton

Chlamydomonas reinhardtii is a model alga of increasing interest as a cell factory for the production of valuable compounds, including therapeutic proteins and bioactive metabolites. Expression of foreign genes in the chloroplast is particularly advantageous as: (i) accumulation of product in this sub-cellular compartment minimises potential toxicity to the rest of the cell; (ii) genes can integrate at specific loci of the chloroplast genome (plastome) by homologous recombination; (iii) the high ploidy of the plastome and the high-level expression of chloroplast genes can be exploited to achieve levels of recombinant protein as high as 5% total cell protein; (iv) the lack of any gene silencing mechanisms in the chloroplast ensures stable expression of transgenes. However, the generation of C. reinhardtii chloroplast transformants requires efficient methods of selection, and ideally methods for subsequent marker removal. Additionally, the use of reporter genes is critical to achieving a comprehensive understanding of gene expression, thereby informing experimental design for recombinant applications. This review discusses currently available selection and reporter systems for chloroplast engineering in C. reinhardtii, as well as those used for chloroplast engineering in higher plants and other microalgae, and looks to the future in terms of possible new markers and reporters that will further advance the C. reinhardtii chloroplast as an expression platform.

Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 239
Author(s):  
Anguo Li ◽  
Ruihao Huang ◽  
Chaogang Wang ◽  
Qunju Hu ◽  
Hui Li ◽  
...  

Antimicrobial peptides are a class of proteins with antibacterial functions. In this study, the anti-lipopolysaccharide factor isoform 3 gene (ALFPm3), encoding an antimicrobial peptide from Penaeus monodon with a super activity was expressed in Chlamydomonas reinhardtii, which would develop a microalga strain that can be used for the antimicrobial peptide production. To construct the expression cluster, namely pH2A-Pm3, the codon optimized ALFPm3 gene was fused with the ble reporter by 2A peptide and inserted into pH124 vector. The glass-bead method was performed to transform pH2A-Pm3 into C. reinhardtii CC-849. In addition to 8 μg/mL zeocin resistance selection, the C. reinhardtii transformants were further confirmed by genomic PCR and RT-PCR. Western blot analysis showed that the C. reinhardtii-derived ALFPm3 (cALFPm3) was successfully expressed in C. reinhardtii transformants and accounted for 0.35% of the total soluble protein (TSP). Furthermore, the results of antibacterial assay revealed that the cALFPm3 could significantly inhibit the growth of a variety of bacteria, including both Gram-negative bacteria and Gram-positive bacteria at a concentration of 0.77 μM. Especially, the inhibition could last longer than 24 h, which performed better than ampicillin. Hence, this study successfully developed a transgenic C. reinhardtii strain, which can produce the active ALFPm3 driven from P. monodon, providing a potential strategy to use C. reinhardtii as the cell factory to produce antimicrobial peptides.


Blood ◽  
1995 ◽  
Vol 85 (2) ◽  
pp. 319-329 ◽  
Author(s):  
S Dziennis ◽  
RA Van Etten ◽  
HL Pahl ◽  
DL Morris ◽  
TL Rothstein ◽  
...  

Abstract CD11b is the alpha chain of the Mac-1 integrin and is preferentially expressed in myeloid cells (neutrophils, monocytes, and macrophages). We have previously shown that the CD11b promoter directs cell-type- specific expression in myeloid lines using transient transfection assays. To confirm that these promoter sequences contain the proper regulatory elements for correct myeloid expression of CD11b in vivo, we have used the -1.7-kb human CD11b promoter to direct reporter gene expression in transgenic mice. Stable founder lines were generated with two different reporter genes, a Thy 1.1 surface marker and the Escherichia coli lacZ (beta-galactosidase) gene. Analysis of founders generated with each reporter demonstrated that the CD11b promoter was capable of driving high levels of transgene expression in murine macrophages for the lifetime of the animals. Similar to the endogenous gene, transgene expression was preferentially found in mature monocytes, macrophages, and neutrophils and not in myeloid precursors. These experiments indicate that the -1.7 CD11b promoter contains the regulatory elements sufficient for high-level macrophage expression. This promoter should be useful for targeting heterologous gene expression to mature myeloid cells.


1999 ◽  
Vol 12 (3) ◽  
pp. 182-188 ◽  
Author(s):  
Lorenz Bülow ◽  
Uwe Köhler ◽  
Rüdiger Cerff ◽  
Reinhard Hehl ◽  
Klaus Düring

The induction pattern of the GapC4 promoter from maize in transgenic potato has been analyzed by fusion to the β-glucuronidase (gus) gene. Under anaerobic conditions this promoter confers high level expression not only in leaves, stems, and roots but also in tubers. After inoculation of potato tuber disks with Erwinia carotovora subsp. atroseptica, β-glucuronidase (GUS) activity could be detected in macerated tissue as well as in surrounding intact tissue. In mock controls no induction was detected, ruling out any induction due to an overall limitation in oxygen in the experimental system. In addition, it could be proven that no diffusion of GUS protein from macerated into intact tissue occurred. The promoter was shown to be aerobically induced even in the absence of live bacteria by incubation with purified Erwinia spp. pectolytic enzymes alone. Therefore, promoter induction seems to be mediated by a mobile factor instead of by limitation in oxygen. These results demonstrate that the maize GapC4 promoter is suitable for directing foreign genes encoding antibacterial proteins in transgenic potato.


Gene ◽  
1996 ◽  
Vol 176 (1-2) ◽  
pp. 269-272 ◽  
Author(s):  
Bifeng Gao ◽  
Sonia C. Flores ◽  
Swapan K. Bose ◽  
Joe M. McCord

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicky Atkinson ◽  
Yuwei Mao ◽  
Kher Xing Chan ◽  
Alistair J. McCormick

AbstractPhotosynthetic CO2 fixation in plants is limited by the inefficiency of the CO2-assimilating enzyme Rubisco. In most eukaryotic algae, Rubisco aggregates within a microcompartment known as the pyrenoid, in association with a CO2-concentrating mechanism that improves photosynthetic operating efficiency under conditions of low inorganic carbon. Recent work has shown that the pyrenoid matrix is a phase-separated, liquid-like condensate. In the alga Chlamydomonas reinhardtii, condensation is mediated by two components: Rubisco and the linker protein EPYC1 (Essential Pyrenoid Component 1). Here, we show that expression of mature EPYC1 and a plant-algal hybrid Rubisco leads to spontaneous condensation of Rubisco into a single phase-separated compartment in Arabidopsis chloroplasts, with liquid-like properties similar to a pyrenoid matrix. This work represents a significant initial step towards enhancing photosynthesis in higher plants by introducing an algal CO2-concentrating mechanism, which is predicted to significantly increase the efficiency of photosynthetic CO2 uptake.


Sign in / Sign up

Export Citation Format

Share Document