expression platform
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 56)

H-INDEX

20
(FIVE YEARS 5)

Author(s):  
Ji-Hui Qiao ◽  
Qiang Gao ◽  
Ying Zang ◽  
Xiao-Dong Fang ◽  
Xian-Bing Wang
Keyword(s):  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Wen Zhu ◽  
Lifu Hu ◽  
Yang Wang ◽  
Liangyin Lv ◽  
Hui Wang ◽  
...  

Abstract Background Although Escherichia coli has been widely used for the expression of exogenous proteins, the secretory expression in this system is still a big obstacle. As one of the most important secretion pathways, hemolysin A (HlyA) system of E. coli can transport substrates directly from the cytoplasm to extracellular medium without the formation of any periplasmic intermediate, making it an ideal candidate for the development of the secretory production platform for exogenous proteins. Results In this work, we developed a novel production platform, THHly, based on the HlyA secretion system, and explored its applications in the efficient preparation and quick detection of tag peptides and anti-microbial peptides. In this novel platform the signal sequence of HlyA is fused to the C-terminal of target peptide, with Tobacco Etch Virus (TEV) protease cleavage site and 6*His tag between them. Five tag peptides displayed good secretory properties in E. coli BL21 (DE3), among which T7 tag and S tag were obtained by two rounds of purification steps and TEV cleavage, and maintained their intrinsic immunogenicity. Furthermore, Cecropin A and Melittin, two different types of widely explored anti-microbial peptides, were produced likewise and verified to possess anti-microbial/anti-tumor bioactivities. No significant bacterial growth inhibition was observed during the fusion protein expression, indicating that the fusion form not only mediated the secretion but also decreased the toxicity of anti-microbial peptides (AMPs) to the host bacteria. To the best of our knowledge, this is the first report to achieve the secretory expression of these two AMPs in E. coli with considerable potential for manufacturing and industrialization purposes. Conclusions The results demonstrate that the HlyA based novel production platform of E. coli allowed the efficient secretory production and purification of peptides, thus suggesting a promising strategy for the industrialized production of peptide pharmaceuticals or reagents. Graphical Abstract


2021 ◽  
Author(s):  
Varduhi Petrosyan ◽  
Lacey E. Dobrolecki ◽  
Lillian Thistlethwaite ◽  
Alaina N Lewis ◽  
Christina Sallas ◽  
...  

Triple negative breast cancer (TNBC) is a highly heterogeneous set of diseases that has, until recently, lacked any FDA-approved, molecularly targeted therapeutics. Thus, systemic chemotherapy regimens remain the standard of care for many. Unfortunately, even combination chemotherapy is ineffective for many TNBC patients, and side-effects can be severe or lethal. Identification of predictive biomarkers for chemotherapy response would allow for the prospective selection of responsive patients, thereby maximizing efficacy and minimizing unwanted toxicities. Here, we leverage a cohort of TNBC PDX models with responses to single-agent docetaxel or carboplatin to identify biomarkers predictive for differential response to these two drugs. To demonstrate their ability to function as a preclinical cohort, PDX were molecularly characterized using whole-exome DNA sequencing, RNAseq transcriptomics, and mass spectrometry-based total proteomics to show proteogenomic consistency with TCGA and CPTAC clinical samples. Focusing first on the transcriptome, we describe a network-based computational approach to identify candidate epithelial and stromal biomarkers of response to carboplatin (MSI1, TMSB15A, ARHGDIB, GGT1, SV2A, SEC14L2, SERPINI1, ADAMTS20, DGKQ) and docetaxel (ITGA7, MAGED4, CERS1, ST8SIA2, KIF24, PARPBP). Biomarker panels are predictive in PDX expression datasets (RNAseq and Affymetrix) for both taxane (docetaxel or paclitaxel) and platinum-based (carboplatin or cisplatin) response, thereby demonstrating both cross expression platform and cross drug class robustness. Biomarker panels were also predictive in clinical datasets with response to cisplatin or paclitaxel, thus demonstrating translational potential of PDX-based preclinical trials. This network-based approach is highly adaptable and can be used to evaluate biomarkers of response to other agents.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1051
Author(s):  
Balamurugan Shanmugaraj ◽  
Konlavat Siriwattananon ◽  
Ashwini Malla ◽  
Waranyoo Phoolcharoen

The emerging human coronavirus infections in the 21st century remain a major public health crisis causing worldwide impact and challenging the global health care system. The virus is circulating in several zoonotic hosts and continuously evolving, causing occasional outbreaks due to spill-over events occurring between animals and humans. Hence, the development of effective vaccines or therapeutic interventions is the current global priority in order to reduce disease severity, frequent outbreaks, and to prevent future infections. Vaccine development for newly emerging pathogens takes a long time, which hinders rapid immunization programs. The concept of plant-based pharmaceuticals can be readily applied to meet the recombinant protein demand by means of transient expression. Plants are evolved as an expression platform, and they bring a combination of unique interests in terms of rapid scalability, flexibility, and economy for industrial-scale production of effective vaccines, diagnostic reagents, and other biopharmaceuticals. Plants offer safe biologics to fulfill emergency demands, especially during pandemic situations or outbreaks caused by emerging strains. This review highlights the features of a plant expression platform for producing recombinant biopharmaceuticals to combat coronavirus infections with emphasis on COVID-19 vaccine and biologics development.


2021 ◽  
Author(s):  
Janson E Hoeher ◽  
Michael A Veirs ◽  
Julia R Widom

Riboswitches are gene-regulating mRNA segments most commonly found in bacteria. A riboswitch contains an aptamer domain that binds to a ligand, causing a conformational change in a downstream expression platform. The aptamer domain of the Class I preQ1 riboswitch from Bacillus subtilis, which consists of a stem-loop structure and an adenine-rich single-stranded tail (L3), re-folds into a pseudoknot structure upon binding of its ligand, preQ1. To study the role of L3 in ligand recognition, we inserted 2-aminopurine (2-AP), a fluorescent base analogue of adenine (A), into the riboswitch at six different positions within L3. 2-AP differs from A in the relocation of its amino group from C6 to C2, allowing us to directly probe the significance of this specific functional group. We used circular dichroism spectroscopy and thermal denaturation experiments to study the structure and stability, respectively, of the riboswitch in the absence and presence of preQ1. At all labeling positions tested, 2-AP substitution inhibited the ability of preQ1 to stabilize the pseudoknot structure, with its location impacting the severity of the effect. Structural studies of the riboswitch suggest that at the most detrimental labeling sites, 2-AP substitution disrupts non-canonical base pairs. Our results show that these base pairs and tertiary interactions involving other residues in L3 play a critical role in ligand recognition by the preQ1 riboswitch, even at positions that are distal to the ligand binding pocket. They also highlight the importance of accounting for perturbations that fluorescent analogues like 2-AP may exert on the system being studied.


Author(s):  
Kum-Kang So ◽  
Jeesun Chun ◽  
Nguyen Ngoc Luong ◽  
Hee-Won Seo ◽  
Dae-Hyuk Kim

Abstract Objectives To explore Saccharomyces cerevisiae as an expression platform for dengue oral immune complex vaccine development. Results Molecular engineering was applied to create a fusion gene construct (scEDIII-PIGS) consisting of a yeast codon optimized sequence encoding for a synthetic consensus dengue envelope domain III (scEDIII) followed by a modified IgG Fc domain (PIGS). Northern blot showed transcription of the target gene, with a temporal expression pattern similar to those from previous work. Western blot showed assembly of various immune complexes from monomer to hexamer. Partial purification of scEDIII-PIGS was also attempted to demonstrate the feasibility of yeast system for immune complex vaccine development. Approximately 1 mg of scEDIII-PIGS can be produced from 1 l culture. Conclusion This work demonstrated for the first time that various immunocomplex structures of our target protein could be efficiently produced in S. cerevisiae for future application in developing oral and injectable vaccines against various pathogens.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ada Gjyrezi ◽  
Giuseppe Galletti ◽  
Jiaren Zhang ◽  
Daniel Worroll ◽  
Michael Sigouros ◽  
...  

AbstractQuantitation of androgen receptor variant (AR-V) expression in circulating tumor cells (CTCs) from patients with metastatic castration-resistant prostate cancer (mCRPC) has great potential for treatment customization. However, the absence of a uniform CTC isolation platform and consensus on an analytical assay has prevented the incorporation of these measurements in routine clinical practice. Here, we present a single-CTC sensitive digital droplet PCR (ddPCR) assay for the quantitation of the two most common AR-Vs, AR-V7, and AR-v567es, using antigen agnostic CTC enrichment. In a cohort of 29 mCRPC patients, we identify AR-V7 in 66% and AR-v567es in 52% of patients. These results are corroborated using another gene expression platform (NanoStringTM) and by analysis of RNA-Seq data from patients with mCRPC (SU2C- PCF Dream Team). We next quantify AR-V expression in matching EpCAM-positive vs EpCAM-negative CTCs, as EpCAM-based CTC enrichment is commonly used. We identify lower AR-V prevalence in the EpCAM-positive fraction, suggesting that EpCAM-based CTC enrichment likely underestimates AR-V prevalence. Lastly, using single CTC analysis we identify enrichment for AR-v567es in patients with neuroendocrine prostate cancer (NEPC) indicating that AR-v567es may be involved in lineage plasticity, which warrants further mechanistic interrogation.


2021 ◽  
Author(s):  
Honglin Feng ◽  
Lucia Acosta-Gamboa ◽  
Lars H Kruse ◽  
Jake D Tracy ◽  
Seung Ho Chung ◽  
...  

Abstract Nicotiana benthamiana is used extensively as a transient expression platform for functional analysis of genes from other species. Acylsugars, which are produced in the trichomes, are a hypothesized cause of the relatively high insect resistance that is observed in N. benthamiana. We characterized the N. benthamiana acylsugar profile, bioinformatically identified two acylsugar acyltransferase genes, ASAT1 and ASAT2, and used CRISPR/Cas9 mutagenesis to produce acylsugar-deficient plants for investigation of insect resistance and foliar water loss. Whereas asat1 mutations reduced accumulation, asat2 mutations causedalmost complete depletion of foliar acylsucroses. Three hemipteran and three lepidopteran herbivores survived, gained weight, and/or reproduced significantly better on asat2 mutants than on wildtype N. benthamiana . Both asat1 and asat2 mutations reduced the water content and increased leaf temperature. Our results demonstrate the specific function of two ASAT proteins in N. benthamiana acylsugar biosynthesis, insect resistance, and desiccation tolerance. The improved growth of aphids and whiteflies on asat2 mutants will facilitate the use of N. benthamiana as a transient expression platform for the functional analysis of insect effectors and resistance genes from other plant species. Similarly, the absence of acylsugars in asat2 mutants will enable analysis of acylsugar biosynthesis genes from other Solanaceae by transient expression.


2021 ◽  
Author(s):  
Milca Rachel da Costa Ribeiro Lins ◽  
Graciely Gomes Correa ◽  
Laura Araujo da Silva Amorim ◽  
Rafael Augusto Lopes Franco ◽  
Nathan Vinicius Ribeiro ◽  
...  

Bacillus subtilis employs five purine riboswitches for the control of purine de novo synthesis and transport at the transcription level. All of them are formed by a structurally conserved aptamer, and a variable expression platform harboring a rho-independent transcription terminator. In this study, we characterized all five purine riboswitches under the context of active gene expression processes both in vitro and in vivo. We identified transcription pause sites located in the expression platform upstream of the terminator of each riboswitch. Moreover, we defined a correlation between in vitro transcription readthrough and in vivo gene expression. Our in vitro assay demonstrated that the riboswitches operate in the micromolar range of concentration for the cognate metabolite. Our in vivo assay showed the dynamics of control of gene expression by each riboswitch. This study deepens the knowledge of the regulatory mechanism of purine riboswitches.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 660
Author(s):  
Lu Tan ◽  
Yiwen Zhang ◽  
Xingxing Wang ◽  
Dal Young Kim

Most alphaviruses are transmitted by mosquitoes and infect a wide range of insects and vertebrates. However, Eilat virus (EILV) is defective for infecting vertebrate cells at multiple levels of the viral life cycle. This host-restriction property renders EILV an attractive expression platform since it is not infectious for vertebrates and therefore provides a highly advantageous safety profile. Here, we investigated the feasibility of versatile EILV-based expression vectors. By replacing the structural genes of EILV with those of other alphaviruses, we generated seven different chimeras. These chimeras were readily rescued in the original mosquito cells and were able to reach high titers, suggesting that EILV is capable of packaging the structural proteins of different lineages. We also explored the ability of EILV to express authentic antigens via double subgenomic (SG) RNA vectors. Four foreign genetic materials of varied length were introduced into the EILV genome, and the expressed heterologous genetic materials were readily detected in the infected cells. By inserting an additional SG promoter into the chimera genome containing the structural genes of Chikungunya virus (CHIKV), we developed a bivalent vaccine candidate against CHIKV and Zika virus. These data demonstrate the outstanding compatibility of the EILV genome. The produced recombinants can be applied to vaccine and diagnostic tool development, but more investigations are required.


Sign in / Sign up

Export Citation Format

Share Document