scholarly journals Electrostatics of Tau Protein by Molecular Dynamics

Biomolecules ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 116 ◽  
Author(s):  
Tarsila Castro ◽  
Florentina-Daniela Munteanu ◽  
Artur Cavaco-Paulo

Tau is a microtubule-associated protein that promotes microtubule assembly and stability. This protein is implicated in several neurodegenerative diseases, including Alzheimer’s. To date, the three-dimensional (3D) structure of tau has not been fully solved, experimentally. Even the most recent information is sometimes controversial in regard to how this protein folds, interacts, and behaves. Predicting the tau structure and its profile sheds light on the knowledge about its properties and biological function, such as the binding to microtubules (MT) and, for instance, the effect on ionic conductivity. Our findings on the tau structure suggest a disordered protein, with discrete portions of well-defined secondary structure, mostly at the microtubule binding region. In addition, the first molecular dynamics simulation of full-length tau along with an MT section was performed, unveiling tau structure when associated with MT and interaction sites. Electrostatics and conductivity were also examined to understand how tau affects the ions in the intracellular fluid environment. Our results bring a new insight into tau and tubulin MT proteins, their characteristics, and the structure–function relationship.

2012 ◽  
Vol 10 (02) ◽  
pp. 1241012 ◽  
Author(s):  
ALEXANDER A. TERENTIEV ◽  
NURBUBU T. MOLDOGAZIEVA ◽  
OLGA V. LEVTSOVA ◽  
DMITRY M. MAXIMENKO ◽  
DENIS A. BOROZDENKO ◽  
...  

It has been long experimentally demonstrated that human alpha-fetoprotein (HAFP) has an ability to bind immobilized estrogens with the most efficiency for synthetic estrogen analog — diethylstilbestrol (DES). However, the question remains why the human AFP (HAFP), unlike rodent AFP, cannot bind free estrogens. Moreover, despite the fact that AFP was first discovered more than 50 years ago and is presently recognized as a "golden standard" among onco-biomarkers, its three-dimensional (3D) structure has not been experimentally solved yet. In this work using MODELLER program, we generated 3D model of HAFP on the basis of homology with human serum albumin (HSA) and Vitamin D–binding protein (VTDB) with subsequent molecular docking of DES to the model structure and molecular dynamics (MD) simulation study of the complex obtained. The model constructed has U-shaped structure in which a cavity may be distinguished. In this cavity the putative estrogen-binding site is localized. Validation by RMSD calculation and with the use of PROCHECK program showed good quality of the model and stability of extended region of four alpha-helical structures that contains putative hormone-binding residues. Data extracted from MD simulation trajectory allow proposing two types of interactions between amino acid residues of HAFP and DES molecule: (1) hydrogen bonding with involvement of residues S445, R452, and E551; (2) hydrophobic interactions with participation of L138, M448, and M548 residues. A suggestion is made that immobilization of the hormone using a long spacer provides delivery of the estrogen molecule to the binding site and, thereby, facilitates interaction between HAFP and the hormone.


2021 ◽  
Vol 22 (3) ◽  
pp. 1400
Author(s):  
Ciresthel Bello-Rios ◽  
Sarita Montaño ◽  
Olga Lilia Garibay-Cerdenares ◽  
Lilian Esmeralda Araujo-Arcos ◽  
Marco Antonio Leyva-Vázquez ◽  
...  

The oncogenic potential of high-risk human papillomavirus (HPV) is predicated on the production of the E6 and E7 oncoproteins, which are responsible for disrupting the control of the cell cycle. Epidemiological studies have proposed that the presence of the N29S and H51N variants of the HPV16 E7 protein is significantly associated with cervical cancer. It has been suggested that changes in the amino acid sequence of E7 variants may affect the oncoprotein 3D structure; however, this remains uncertain. An analysis of the structural differences of the HPV16 E7 protein and its variants (N29S and H51N) was performed through homology modeling and structural refinement by molecular dynamics simulation. We propose, for the first time, a 3D structure of the E7 reference protein and two of Its variants (N29S and H51N), and conclude that the mutations induced by the variants in N29S and H51N have a significant influence on the 3D structure of the E7 protein of HPV16, which could be related to the oncogenic capacity of this protein.


1994 ◽  
Vol 373 ◽  
Author(s):  
Roger E. Stoller

AbstractA series of high-energy, up to 20 keV, displacement cascades in iron have been investigated for times up to 200 ps at 100 K using the method of molecular dynamics simulation. Thesimulations were carried out using the MOLDY code and a modified version of the many-bodyinteratomic potential developed by Finnis and Sinclair. The paper focuses on those results obtained at the highest energies, 10 and 20 keV. The results indicate that the fraction of the Frenkel pairs surviving in-cascade recombination remains fairly high in iron and that the fraction of the surviving point defects that cluster is lower than in materials such as copper. In particular, vacancy clustering appears to be inhibited in iron. Some of the interstitial clusters were observed to exhibit an unexpectedly complex, three-dimensional morphology. The observations are discussed in terms of their relevance to microstructural evolution and mechanical property changes in irradiated iron-based alloys.


Sign in / Sign up

Export Citation Format

Share Document