scholarly journals A Stochastic Multivariate Irregularly Sampled Time Series Imputation Method for Electronic Health Records

2021 ◽  
Vol 1 (3) ◽  
pp. 166-181
Author(s):  
Muhammad Adib Uz Zaman ◽  
Dongping Du

Electronic health records (EHRs) can be very difficult to analyze since they usually contain many missing values. To build an efficient predictive model, a complete dataset is necessary. An EHR usually contains high-dimensional longitudinal time series data. Most commonly used imputation methods do not consider the importance of temporal information embedded in EHR data. Besides, most time-dependent neural networks such as recurrent neural networks (RNNs) inherently consider the time steps to be equal, which in many cases, is not appropriate. This study presents a method using the gated recurrent unit (GRU), neural ordinary differential equations (ODEs), and Bayesian estimation to incorporate the temporal information and impute sporadically observed time series measurements in high-dimensional EHR data.

Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1154
Author(s):  
Jiwei Zhao ◽  
Chi Chen

We study how to conduct statistical inference in a regression model where the outcome variable is prone to missing values and the missingness mechanism is unknown. The model we consider might be a traditional setting or a modern high-dimensional setting where the sparsity assumption is usually imposed and the regularization technique is popularly used. Motivated by the fact that the missingness mechanism, albeit usually treated as a nuisance, is difficult to specify correctly, we adopt the conditional likelihood approach so that the nuisance can be completely ignored throughout our procedure. We establish the asymptotic theory of the proposed estimator and develop an easy-to-implement algorithm via some data manipulation strategy. In particular, under the high-dimensional setting where regularization is needed, we propose a data perturbation method for the post-selection inference. The proposed methodology is especially appealing when the true missingness mechanism tends to be missing not at random, e.g., patient reported outcomes or real world data such as electronic health records. The performance of the proposed method is evaluated by comprehensive simulation experiments as well as a study of the albumin level in the MIMIC-III database.


Author(s):  
Muhammad Faheem Mushtaq ◽  
Urooj Akram ◽  
Muhammad Aamir ◽  
Haseeb Ali ◽  
Muhammad Zulqarnain

It is important to predict a time series because many problems that are related to prediction such as health prediction problem, climate change prediction problem and weather prediction problem include a time component. To solve the time series prediction problem various techniques have been developed over many years to enhance the accuracy of forecasting. This paper presents a review of the prediction of physical time series applications using the neural network models. Neural Networks (NN) have appeared as an effective tool for forecasting of time series.  Moreover, to resolve the problems related to time series data, there is a need of network with single layer trainable weights that is Higher Order Neural Network (HONN) which can perform nonlinearity mapping of input-output. So, the developers are focusing on HONN that has been recently considered to develop the input representation spaces broadly. The HONN model has the ability of functional mapping which determined through some time series problems and it shows the more benefits as compared to conventional Artificial Neural Networks (ANN). The goal of this research is to present the reader awareness about HONN for physical time series prediction, to highlight some benefits and challenges using HONN.


2021 ◽  
Vol 441 ◽  
pp. 161-178
Author(s):  
Philip B. Weerakody ◽  
Kok Wai Wong ◽  
Guanjin Wang ◽  
Wendell Ela

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4112 ◽  
Author(s):  
Se-Min Lim ◽  
Hyeong-Cheol Oh ◽  
Jaein Kim ◽  
Juwon Lee ◽  
Jooyoung Park

Recently, wearable devices have become a prominent health care application domain by incorporating a growing number of sensors and adopting smart machine learning technologies. One closely related topic is the strategy of combining the wearable device technology with skill assessment, which can be used in wearable device apps for coaching and/or personal training. Particularly pertinent to skill assessment based on high-dimensional time series data from wearable sensors is classifying whether a player is an expert or a beginner, which skills the player is exercising, and extracting some low-dimensional representations useful for coaching. In this paper, we present a deep learning-based coaching assistant method, which can provide useful information in supporting table tennis practice. Our method uses a combination of LSTM (Long short-term memory) with a deep state space model and probabilistic inference. More precisely, we use the expressive power of LSTM when handling high-dimensional time series data, and state space model and probabilistic inference to extract low-dimensional latent representations useful for coaching. Experimental results show that our method can yield promising results for characterizing high-dimensional time series patterns and for providing useful information when working with wearable IMU (Inertial measurement unit) sensors for table tennis coaching.


Hydrology ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 63 ◽  
Author(s):  
Benjamin Nelsen ◽  
D. Williams ◽  
Gustavious Williams ◽  
Candace Berrett

Complete and accurate data are necessary for analyzing and understanding trends in time-series datasets; however, many of the available time-series datasets have gaps that affect the analysis, especially in the earth sciences. As most available data have missing values, researchers use various interpolation methods or ad hoc approaches to data imputation. Since the analysis based on inaccurate data can lead to inaccurate conclusions, more accurate data imputation methods can provide accurate analysis. We present a spatial-temporal data imputation method using Empirical Mode Decomposition (EMD) based on spatial correlations. We call this method EMD-spatial data imputation or EMD-SDI. Though this method is applicable to other time-series data sets, here we demonstrate the method using temperature data. The EMD algorithm decomposes data into periodic components called intrinsic mode functions (IMF) and exactly reconstructs the original signal by summing these IMFs. EMD-SDI initially decomposes the data from the target station and other stations in the region into IMFs. EMD-SDI evaluates each IMF from the target station in turn and selects the IMF from other stations in the region with periodic behavior most correlated to target IMF. EMD-SDI then replaces a section of missing data in the target station IMF with the section from the most closely correlated IMF from the regional stations. We found that EMD-SDI selects the IMFs used for reconstruction from different stations throughout the region, not necessarily the station closest in the geographic sense. EMD-SDI accurately filled data gaps from 3 months to 5 years in length in our tests and favorably compares to a simple temporal method. EMD-SDI leverages regional correlation and the fact that different stations can be subject to different periodic behaviors. In addition to data imputation, the EMD-SDI method provides IMFs that can be used to better understand regional correlations and processes.


Sign in / Sign up

Export Citation Format

Share Document