scholarly journals Signal Enhancement in Oriented Immunosorbent Assays: A Balance between Accessibility of Antigen Binding Sites and Avidity

Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 493
Author(s):  
Vanessa Susini ◽  
Vanna Fierabracci ◽  
Gaia Barria ◽  
Lisa Dodoli ◽  
Laura Caponi ◽  
...  

The sensitivity of immunoassays was reported to be increased by the orientation of antibodies. We investigated how the size and valence of antigens and orientation and valence of antibodies contribute to the analytical sensitivity of ELISA. Antigens differing in size and number of epitopes were compared using oriented and non-oriented ELISAs: the orientation of antibodies was obtained coating half-fragment antibodies on maleimide microplates, while, in non-oriented ELISA, whole antibodies were randomly physisorbed. The oriented assay performed better than the non-oriented one at each concentration (0.4–3.3 ng/mL) of a small monomeric antigen (cardiac Troponin I, 24 kDa, Rh 3 nm). No significant differences were observed with a large monovalent antigen (prostate-specific antigen-alpha(1) antichymotrypsin, 90 kDa, Rh > 3 nm), since its steric hindrance overcame the increased availability of antigen binding sites given by orientation. Large multivalent antigens (ferritin, 280 kDa, Rh 6 nm; α-fetoprotein, >70 kDa, Rh > 3.3 nm) performed better in non-oriented assays. In this case, the repeated epitopes on the surface of the antigens favored the engagement of both antigen binding sites of the whole IgG, thus suggesting that avidity represented the leading force in this experimental setting. In conclusion, the design of high-sensitivity ELISAs should consider the dimension and valency of antigens in addition to the affinity and avidity of antibodies.

2018 ◽  
Vol 56 (3) ◽  
pp. 492-501 ◽  
Author(s):  
Silvia Masotti ◽  
Concetta Prontera ◽  
Veronica Musetti ◽  
Simona Storti ◽  
Rudina Ndreu ◽  
...  

AbstractBackground:The study aim was to evaluate and compare the analytical performance of the new chemiluminescent immunoassay for cardiac troponin I (cTnI), called Access hs-TnI using DxI platform, with those of Access AccuTnI+3 method, and high-sensitivity (hs) cTnI method for ARCHITECT platform.Methods:The limits of blank (LoB), detection (LoD) and quantitation (LoQ) at 10% and 20% CV were evaluated according to international standardized protocols. For the evaluation of analytical performance and comparison of cTnI results, both heparinized plasma samples, collected from healthy subjects and patients with cardiac diseases, and quality control samples distributed in external quality assessment programs were used.Results:LoB, LoD and LoQ at 20% and 10% CV values of the Access hs-cTnI method were 0.6, 1.3, 2.1 and 5.3 ng/L, respectively. Access hs-cTnI method showed analytical performance significantly better than that of Access AccuTnI+3 method and similar results to those of hs ARCHITECT cTnI method. Moreover, the cTnI concentrations measured with Access hs-cTnI method showed close linear regressions with both Access AccuTnI+3 and ARCHITECT hs-cTnI methods, although there were systematic differences between these methods. There was no difference between cTnI values measured by Access hs-cTnI in heparinized plasma and serum samples, whereas there was a significant difference between cTnI values, respectively measured in EDTA and heparin plasma samples.Conclusions:Access hs-cTnI has analytical sensitivity parameters significantly improved compared to Access AccuTnI+3 method and is similar to those of the high-sensitivity method using ARCHITECT platform.


2017 ◽  
Vol 7 (6) ◽  
pp. 577-586 ◽  
Author(s):  
Johannes Mair ◽  
Bertil Lindahl ◽  
Christian Müller ◽  
Evangelos Giannitsis ◽  
Kurt Huber ◽  
...  

High-sensitivity cardiac troponin assays enable cardiac troponin measurement with a high degree of analytical sensitivity and a low level of analytical imprecision at the low measuring range. One of the most important advantages of these new assays is that they allow novel, more rapid approaches for ruling in or ruling out acute myocardial infarctions. The increase in the early diagnostic sensitivity of high-sensitivity cardiac troponin assays comes at the cost of a reduced acute myocardial infarction specificity of the biomarker, because more patients with other causes of acute or chronic myocardial injury without overt myocardial ischaemia are detected than with previous cardiac troponin assays. Increased troponin concentrations that do not fit with the clinical presentation are seen in the daily routine, mainly as a result of a variety of pathologies, and if tested in the same sample, even discrepancies between high-sensitivity cardiac troponin I and troponin T test results may sometimes be found as well. In addition, analytically false-positive test results occasionally may occur since no assay is perfect. In this review, we summarise the biochemical, pathophysiological and analytical background of the work-up for such a clinical setting.


Author(s):  
Peter A. Kavsak ◽  
Tara Edge ◽  
Chantele Roy ◽  
Paul Malinowski ◽  
Karen Bamford ◽  
...  

AbstractObjectivesTo analytically evaluate Ortho Clinical Diagnostics VITROS high-sensitivity cardiac troponin I (hs-cTnI) assay in specific matrices with comparison to other hs-cTn assays.MethodsThe limit of detection (LoD), imprecision, interference and stability testing for both serum and lithium heparin (Li-Hep) plasma for the VITROS hs-cTnI assay was determined. We performed Passing-Bablok regression analyses between sample types for the VITROS hs-cTnI assay and compared them to the Abbott ARCHITECT, Beckman Access and the Siemens ADVIA Centaur hs-cTnI assays. We also performed Receiver-operating characteristic curve analyses with the area under the curve (AUC) determined in an emergency department (ED)-study population (n=131) for myocardial infarction (MI).ResultsThe VITROS hs-cTnI LoD was 0.73 ng/L (serum) and 1.4 ng/L (Li-Hep). Stability up to five freeze-thaws was observed for the Ortho hs-cTnI assay, with the analyte stability at room temperature in serum superior to Li-Hep with gross hemolysis also affecting Li-Hep plasma hs-cTnI results. Comparison of Li-Hep to serum concentrations (n=202), yielded proportionally lower concentrations in plasma with the VITROS hs-cTnI assay (slope=0.85; 95% confidence interval [CI]:0.83–0.88). In serum, the VITROS hs-cTnI concentrations were proportionally lower compared to other hs-cTnI assays, with similar slopes observed between assays in samples frozen <−70 °C for 17 years (ED-study) or in 2020. In the ED-study, the VITROS hs-cTnI assay had an AUC of 0.974 (95%CI:0.929–0.994) for MI, similar to the AUCs of other hs-cTn assays.ConclusionsLack of standardization of hs-cTnI assays across manufacturers is evident. The VITROS hs-cTnI assay yields lower concentrations compared to other hs-cTnI assays. Important differences exist between Li-Hep plasma and serum, with evidence of stability and excellent clinical performance comparable to other hs-cTn assays.


Author(s):  
Peter A. Kavsak ◽  
Shawn Mondoux ◽  
Andrew Worster ◽  
Janet Martin ◽  
Vikas Tandon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document