scholarly journals Comparison of Different Visual Feedback Methods for SSVEP-Based BCIs

2020 ◽  
Vol 10 (4) ◽  
pp. 240
Author(s):  
Mihaly Benda ◽  
Ivan Volosyak

In this paper we compared different visual feedback methods, informing users about classification progress in a steady-state visual evoked potential (SSVEP)-based brain–computer interface (BCI) speller application. According to results from our previous studies, changes in stimulus size and contrast as online feedback of classification progress have great impact on BCI performance in SSVEP-based spellers. In this experiment we further investigated these effects, and tested a 4-target SSVEP speller interface with a much higher number of subjects. Five different scenarios were used with variations in stimulus size and contrast, “no feedback”, “size increasing”, “size decreasing”, “contrast increasing”, and “contrast decreasing”. With each of the five scenarios, 24 participants had to spell six letter words (at least 18 selections with this three-steps speller). The fastest feedback modalities were different for the users, there was no visual feedback which was generally better than the others. With the used interface, six users achieved significantly better Information Transfer Rates (ITRs) compared to the “no feedback” condition. Their average improvement by using the individually fastest feedback method was 46.52%. This finding is very important for BCI experiments, as by determining the optimal feedback for the user, the speed of the BCI can be improved without impairing the accuracy.

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5309
Author(s):  
Akira Ikeda ◽  
Yoshikazu Washizawa

The steady-state visual evoked potential (SSVEP), which is a kind of event-related potential in electroencephalograms (EEGs), has been applied to brain–computer interfaces (BCIs). SSVEP-based BCIs currently perform the best in terms of information transfer rate (ITR) among various BCI implementation methods. Canonical component analysis (CCA) or spectrum estimation, such as the Fourier transform, and their extensions have been used to extract features of SSVEPs. However, these signal extraction methods have a limitation in the available stimulation frequency; thus, the number of commands is limited. In this paper, we propose a complex valued convolutional neural network (CVCNN) to overcome the limitation of SSVEP-based BCIs. The experimental results demonstrate that the proposed method overcomes the limitation of the stimulation frequency, and it outperforms conventional SSVEP feature extraction methods.


Author(s):  
Kun Chen ◽  
Fei Xu ◽  
Quan Liu ◽  
Haojie Liu ◽  
Yang Zhang ◽  
...  

Among different brain–computer interfaces (BCIs), the steady-state visual evoked potential (SSVEP)-based BCI has been widely used because of its higher signal to noise ratio (SNR) and greater information transfer rate (ITR). In this paper, a method based on multiple signal classification (MUSIC) was proposed for multidimensional SSVEP signal processing. Both fundamental and second harmonics of SSVEPs were employed for the final target recognition. The experimental results proved it has the advantage of reducing recognition time. Also, the relation between the duty-cycle of the stimulus signals and the amplitude of the second harmonics of SSVEPs was discussed via experiments. In order to verify the feasibility of proposed methods, a two-layer spelling system was designed. Different subjects including those who have never used BCIs before used the system fluently in an unshielded environment.


2014 ◽  
Vol 539 ◽  
pp. 84-88 ◽  
Author(s):  
Kun Chen ◽  
Quan Liu ◽  
Qing Song Ai

Brain computer interfaces (BCIs) have become a research hotspot in recent years because of great potentials to help disabled people communicate with the outside world. Among different paradigms, steady state visual evoked potential (SSVEP)-based BCIs are commonly implemented in real applications, because they provide higher signal to noise ratio (SNR) and greater information transfer rate (ITR) than other BCI techniques. Various algorithms have been employed for SSVEP signal processing, like fast Fourier transform (FFT), wavelet analysis and canonical correlation analysis (CCA). In this paper, a new method based on multiple signal classification (MUSIC) was proposed for SSVEP feature extraction. The experimental results proved that it could provide higher frequency resolution and the recognition accuracy was excellent via adjusting some parameters.


Author(s):  
Ibrahim Kaya ◽  
Jorge Bohorquez ◽  
Ozcan Ozdamar

Visual Evoked Potentials (VEPs) are used in clinical applications in ophthalmology, neurology and extensively in brain computer interface (BCI) research. BCI literature covers steady state VEP (SSVEP) and code modulated VEP (c-VEP) BCIs along with sophisticated methods to improve information transfer rates (ITR). There is a gap of knowledge regarding the VEP adaptation dynamics, physiological generation mechanisms and relation with BCI performance. A simple dual display VEP switch was developed to test signatures elicited by non-isochronic, non-singular, low jitter stimuli at the rates of 10, 32, 50 and 70 reversals per second (rps). Non-isochronic, low-jitter stimulation elicits Quasi-Steady-State VEPs (QSS-VEPs) that are utilized for simultaneous generation of transient VEP and QSS-VEP. QSS-VEP is a special case of c-VEPs and it is assumed that it shares the similar generators of the SSVEPs. Eight subjects were recorded and the performance of the overall system was analyzed by means of Receiver Operating Characteristic (ROC) curves, accuracy plots and ITRs. In summary QSS-VEPs performed better than transient VEPs. It was found that in general 32rps stimulation had the highest ROC area, accuracy and ITRs in general. To investigate the reasons behind this, adaptation dynamics of transient VEPs and QSS-VEPs at all four rates were analyzed and speculated. Moreover, QSS-VEPs were found to lead to higher accuracy by the template matching compared to SSVEPs at 10rps and 32rps.


2021 ◽  
Vol 11 (4) ◽  
pp. 450
Author(s):  
Minglun Li ◽  
Dianning He ◽  
Chen Li ◽  
Shouliang Qi

The steady-state visual evoked potential (SSVEP), measured by the electroencephalograph (EEG), has high rates of information transfer and signal-to-noise ratio, and has been used to construct brain–computer interface (BCI) spellers. In BCI spellers, the targets of alphanumeric characters are assigned different visual stimuli and the fixation of each target generates a unique SSVEP. Matching the SSVEP to the stimulus allows users to select target letters and numbers. Many BCI spellers that harness the SSVEP have been proposed over the past two decades. Various paradigms of visual stimuli, including the procedure of target selection, layout of targets, stimulus encoding, and the combination with other triggering methods are used and considered to influence on the BCI speller performance significantly. This paper reviews these stimulus paradigms and analyzes factors influencing their performance. The fundamentals of BCI spellers are first briefly described. SSVEP-based BCI spellers, where only the SSVEP is used, are classified by stimulus paradigms and described in chronological order. Furthermore, hybrid spellers that involve the use of the SSVEP are presented in parallel. Factors influencing the performance and visual fatigue of BCI spellers are provided. Finally, prevailing challenges and prospective research directions are discussed to promote the development of BCI spellers.


2020 ◽  
Vol 08 (01) ◽  
pp. 40-52
Author(s):  
Nanlin Shi

This study applied a steady-state visual evoked potential (SSVEP) based brain–computer interface (BCI) to a patient in lock-in state with amyotrophic lateral sclerosis (ALS) and validated its feasibility for communication. The developed calibration-free and asynchronous spelling system provided a natural and efficient communication experience for the patient, achieving a maximum free-spelling accuracy above 90% and an information transfer rate of over 22.203 bits/min. A set of standard frequency scanning and task spelling data were also acquired to evaluate the patient’s SSVEP response and to facilitate further personalized BCI design. The results demonstrated that the proposed SSVEP-based BCI system was practical and efficient enough to provide daily life communication for ALS patients.


Technologies ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 63
Author(s):  
Surej Mouli ◽  
Ramaswamy Palaniappan ◽  
Emmanuel Molefi ◽  
Ian McLoughlin

Steady State Visual Evoked Potential (SSVEP) methods for brain–computer interfaces (BCI) are popular due to higher information transfer rate and easier setup with minimal training, compared to alternative methods. With precisely generated visual stimulus frequency, it is possible to translate brain signals into external actions or signals. Traditionally, SSVEP data is collected from the occipital region using electrodes with or without gel, normally mounted on a head cap. In this experimental study, we develop an in-ear electrode to collect SSVEP data for four different flicker frequencies and compare against occipital scalp electrode data. Data from five participants demonstrates the feasibility of in-ear electrode based SSVEP, significantly enhancing the practicability of wearable BCI applications.


2021 ◽  
Vol 15 ◽  
Author(s):  
Anti Ingel ◽  
Raul Vicente

In this study, the information bottleneck method is proposed as an optimisation method for steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI). The information bottleneck is an information-theoretic optimisation method for solving problems with a trade-off between preserving meaningful information and compression. Its main practical application in machine learning is in representation learning or feature extraction. In this study, we use the information bottleneck to find optimal classification rule for a BCI. This is a novel application for the information bottleneck. This approach is particularly suitable for BCIs since the information bottleneck optimises the amount of information transferred by the BCI. Steady-state visual evoked potential-based BCIs often classify targets using very simple rules like choosing the class corresponding to the largest feature value. We call this classifier the arg max classifier. It is unlikely that this approach is optimal, and in this study, we propose a classification method specifically designed to optimise the performance measure of BCIs. This approach gives an advantage over standard machine learning methods, which aim to optimise different measures. The performance of the proposed algorithm is tested on two publicly available datasets in offline experiments. We use the standard power spectral density analysis (PSDA) and canonical correlation analysis (CCA) feature extraction methods on one dataset and show that the current approach outperforms most of the related studies on this dataset. On the second dataset, we use the task-related component analysis (TRCA) method and demonstrate that the proposed method outperforms the standard argmax classification rule in terms of information transfer rate when using a small number of classes. To our knowledge, this is the first time the information bottleneck is used in the context of SSVEP-based BCIs. The approach is unique in the sense that optimisation is done over the space of classification functions. It potentially improves the performance of BCIs and makes it easier to calibrate the system for different subjects.


Sign in / Sign up

Export Citation Format

Share Document