scholarly journals A Novel Method to Assess Motor Cortex Connectivity and Event Related Desynchronization Based on Mass Models

2021 ◽  
Vol 11 (11) ◽  
pp. 1479
Author(s):  
Mauro Ursino ◽  
Giulia Ricci ◽  
Laura Astolfi ◽  
Floriana Pichiorri ◽  
Manuela Petti ◽  
...  

Knowledge of motor cortex connectivity is of great value in cognitive neuroscience, in order to provide a better understanding of motor organization and its alterations in pathological conditions. Traditional methods provide connectivity estimations which may vary depending on the task. This work aims to propose a new method for motor connectivity assessment based on the hypothesis of a task-independent connectivity network, assuming nonlinear behavior. The model considers six cortical regions of interest (ROIs) involved in hand movement. The dynamics of each region is simulated using a neural mass model, which reproduces the oscillatory activity through the interaction among four neural populations. Parameters of the model have been assigned to simulate both power spectral densities and coherences of a patient with left-hemisphere stroke during resting condition, movement of the affected, and movement of the unaffected hand. The presented model can simulate the three conditions using a single set of connectivity parameters, assuming that only inputs to the ROIs change from one condition to the other. The proposed procedure represents an innovative method to assess a brain circuit, which does not rely on a task-dependent connectivity network and allows brain rhythms and desynchronization to be assessed on a quantitative basis.

2020 ◽  
Vol 14 ◽  
Author(s):  
John D. Griffiths ◽  
Anthony Randal McIntosh ◽  
Jeremie Lefebvre

Rhythmic activity in the brain fluctuates with behaviour and cognitive state, through a combination of coexisting and interacting frequencies. At large spatial scales such as those studied in human M/EEG, measured oscillatory dynamics are believed to arise primarily from a combination of cortical (intracolumnar) and corticothalamic rhythmogenic mechanisms. Whilst considerable progress has been made in characterizing these two types of neural circuit separately, relatively little work has been done that attempts to unify them into a single consistent picture. This is the aim of the present paper. We present and examine a whole-brain, connectome-based neural mass model with detailed long-range cortico-cortical connectivity and strong, recurrent corticothalamic circuitry. This system reproduces a variety of known features of human M/EEG recordings, including spectral peaks at canonical frequencies, and functional connectivity structure that is shaped by the underlying anatomical connectivity. Importantly, our model is able to capture state- (e.g., idling/active) dependent fluctuations in oscillatory activity and the coexistence of multiple oscillatory phenomena, as well as frequency-specific modulation of functional connectivity. We find that increasing the level of sensory drive to the thalamus triggers a suppression of the dominant low frequency rhythms generated by corticothalamic loops, and subsequent disinhibition of higher frequency endogenous rhythmic behaviour of intracolumnar microcircuits. These combine to yield simultaneous decreases in lower frequency and increases in higher frequency components of the M/EEG power spectrum during states of high sensory or cognitive drive. Building on this, we also explored the effect of pulsatile brain stimulation on ongoing oscillatory activity, and evaluated the impact of coexistent frequencies and state-dependent fluctuations on the response of cortical networks. Our results provide new insight into the role played by cortical and corticothalamic circuits in shaping intrinsic brain rhythms, and suggest new directions for brain stimulation therapies aimed at state-and frequency-specific control of oscillatory brain activity.


2017 ◽  
Author(s):  
P. Tewarie ◽  
A. Daffertshofer ◽  
B.W. van Dijk

1AbstractNeural mass models are accepted as efficient modelling techniques to model empirical observations such as disturbed oscillations or neuronal synchronization. Neural mass models are based on the mean-field assumption, i.e. they capture the mean-activity of a neuronal population. However, it is unclear if neural mass models still describe the mean activity of a neuronal population when the underlying neural network topology is not homogenous. Here, we test whether the mean activity of a neuronal population can be described by neural mass models when there is neuronal loss and when the connections in the network become sparse. To this end, we derive two neural mass models from a conductance based leaky integrate-and-firing (LIF) model. We then compared the power spectral densities of the mean activity of a network of inhibitory and excitatory LIF neurons with that of neural mass models by computing the Kolmogorov-Smirnov test statistic. Firstly, we found that when the number of neurons in a fully connected LIF-network is larger than 300, the neural mass model is a good description of the mean activity. Secondly, if the connection density in the LIF-network does not exceed a crtical value, this leads to desynchronization of neurons within the LIF-network and to failure of neural mass description. Therefore we conclude that neural mass models can be used for analysing empirical observations if the neuronal network of interest is large enough and when neurons in this system synchronize.


2021 ◽  
Author(s):  
Áine Byrne ◽  
James Ross ◽  
Rachel Nicks ◽  
Stephen Coombes

AbstractNeural mass models have been used since the 1970s to model the coarse-grained activity of large populations of neurons. They have proven especially fruitful for understanding brain rhythms. However, although motivated by neurobiological considerations they are phenomenological in nature, and cannot hope to recreate some of the rich repertoire of responses seen in real neuronal tissue. Here we consider a simple spiking neuron network model that has recently been shown to admit an exact mean-field description for both synaptic and gap-junction interactions. The mean-field model takes a similar form to a standard neural mass model, with an additional dynamical equation to describe the evolution of within-population synchrony. As well as reviewing the origins of this next generation mass model we discuss its extension to describe an idealised spatially extended planar cortex. To emphasise the usefulness of this model for EEG/MEG modelling we show how it can be used to uncover the role of local gap-junction coupling in shaping large scale synaptic waves.


2016 ◽  
Vol 26 (11) ◽  
pp. 113118 ◽  
Author(s):  
Yuzhen Cao ◽  
Liu Jin ◽  
Fei Su ◽  
Jiang Wang ◽  
Bin Deng

Sign in / Sign up

Export Citation Format

Share Document