scholarly journals SSI on the Dynamic Behaviour of a Historical Masonry Building: Experimental versus Numerical Results

Buildings ◽  
2014 ◽  
Vol 4 (4) ◽  
pp. 978-1000 ◽  
Author(s):  
Francesca Ceroni ◽  
Stefania Sica ◽  
Angelo Garofano ◽  
Marisa Pecce
2017 ◽  
Vol 55 (8) ◽  
pp. 668-673
Author(s):  
T. Kitamura ◽  
K. Tohkai ◽  
F. Kawagishi ◽  
M. Onishi

Heritage ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 989-1017
Author(s):  
Pier Silvio Marseglia ◽  
Francesco Micelli ◽  
Maria Antonietta Aiello

In seismic areas, masonry construction is prone to brittle failures due to the mechanical behavior of the constituent materials and to the low capacity of force redistributions. The redistribution capacity is mainly due to the presence of horizontal connections upon the walls and to the stiffness of the roof, which is typically a vaulted structure. The modeling of the global behavior of a masonry building, taking into account the accurate stiffness of the vaults, is a major issue in seismic design and assessment. The complex geometry of the vaults can be considered as an equivalent plate, able to replicate the stiffness behavior and the force redistribution capacity of the real vault. In this study, the efforts of the authors are addressed to the definition of a plate, able to replace the vaulted surfaces in a global numerical model. The ideal diaphragm is considered as a generally orthotropic plate with the same footprint and the same thickness of the original vault. An extended parametric study was conducted in which the mechanical and geometrical parameters were varied, such as the vault thickness, its dimensions, the constraint conditions, and the possible presence of side walls. The results are presented and discussed herein, with the aim of providing useful information to the researchers and practitioners involved in seismic analyses of historical masonry construction.


2009 ◽  
Vol 147-149 ◽  
pp. 444-449
Author(s):  
Robert Panowicz ◽  
Jacek Janiszewski

Selection of a constitutive model from commonly used ones, which in the best way describes dynamic behaviour of material during electromagnetic expanding ring test, is our primary goal in this work. Five more popular constitutive models are examined, i.e., Johnson-Cook, Steinberg-Guinan, Zerilli-Armstrong, MTS, and Preston-Tonks-Wallace model. As a criterion of the selection, qualitative/quantitative agreement of the numerical results with analogous data obtained from experiment presented in the work was taken [1]. It was found that the numerical results obtained by using Steinberg-Guinan or Preston-Tonks-Wallace model gave the best agreement with experimental data.


2017 ◽  
Vol 11 (04) ◽  
pp. 1750012
Author(s):  
Vail Karakale

Historic buildings and monuments are an important part of our cultural heritage that must be protected and their sustainability ensured, especially when earthquakes occur. In this paper, a technique that uses structural steel frames is proposed as one way of strengthening unreinforced masonry (URM) in historical buildings. The idea underpinning this technique is to reduce the earthquake displacement demand on non-ductile URM walls by attaching steel frames to the building floors from inside. These frames run parallel to the structural system of the building and are fixed at their base to the existing foundation of the building. Furthermore, they are constructed rapidly, do not occupy architectural space, save the building’s historic fabric, and can be easily replaced after an earthquake if some minor damage ensues. The proposed technique was applied to a five-story historical masonry building in Istanbul. The results of seismic performance analysis indicate that even though the building has plan irregularities, the proposed steel frames are able to effectively enhance the building’s seismic performance by reducing inter-story drifts and increasing lateral stiffness and strength.


Buildings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 471
Author(s):  
Ilaria Capanna ◽  
Riccardo Cirella ◽  
Angelo Aloisio ◽  
Franco Di Di Fabio ◽  
Massimo Fragiacomo

This paper focuses on the dynamic behaviour of a low-rise masonry building representing the Italian residential heritage through experimental and numerical analyses. The authors discuss an application of combined Operational Modal Analysis and Finite Element Model updating for indirect estimation of the structural parameters. Two ambient vibration tests were carried out to estimate the structure’s dynamic behaviour in operational conditions. The first experimental setup consisted of accelerometers gathered in a row along the first floor to characterize the local dynamic of the floor. Conversely, the second setup had the accelerometers placed at the building’s corners to characterize the global dynamics. The outcomes of the first setup were used to estimate the mechanical parameters of the floor, while the ones form the second were used to characterize the mechanical parameters of the masonry piers. Therefore, two finite element models were implemented: (i) a single beam with an equivalent section of the floor to grasp the local behaviour of the investigated horizontal structure; (ii) an equivalent frame model of the entire building to characterise the global dynamic behaviour. The model updating process was developed in two phases to seize local and global dynamic responses. The updated numerical model formed the basis for a sensitivity analysis using the modelling parameters. The authors chose to delve into the influence of the floor on the dynamic behaviour of low-rise masonry buildings. With this aim, non-linear dynamic analyses were carried out under different mechanical characteristics of floors, expressing the scatter for ordinary masonry buildings. The displacements’ trends along the height of the building evidenced the notable role of the floor’s stiffness in the non-linear dynamic behaviour of the building. Lastly, the authors derived the fragility curves predicting the seismic performance in failure probability under a highly severe damage state.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1177 ◽  
Author(s):  
Yonghui Li ◽  
Xinyuan Dang ◽  
Changchang Xia ◽  
Yan Ma ◽  
Daisuke Ogura ◽  
...  

Mold growth poses a high risk to a large number of existing buildings and their users. Air leakage through the air cavities of the building walls, herein gaps between walls and air conditioner pipes penetrating the walls, may increase the risks of interstitial condensation, mold growth and other moisture-related problems. In order to quantify the mold growth risks due to air leakage through air cavity, an office room in a historical masonry building in Nanjing, China, was selected, and its indoor environment has been studied. Fungi colonization can be seen on the surface of air conditioner pipes in the interior side near air cavity of the wall. Hygrothermometers and thermocouples logged interior and exterior temperature and relative humidity from June 2018 to January 2020. The measured data show that in summer the outdoor humidity remained much higher than that of the room, while the temperature near the air cavity stays lower than those of the other parts in the room. Hot and humid outdoor air may condense on the cold wall surface near an air cavity. A two-dimensional hygrothermal simulation was made. Air leakage through the air cavities of walls proved to be a crucial factor for mold growth.


Sign in / Sign up

Export Citation Format

Share Document