scholarly journals Novel Micro-Mesoporous Composite ZSM-5 Catalyst for Aromatics Production by Catalytic Fast Pyrolysis of Lignin Residues

Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 378 ◽  
Author(s):  
Wenbo Wang ◽  
Zhongyang Luo ◽  
Simin Li ◽  
Shuang Xue ◽  
Haoran Sun

The industrial utilization of lignocellulosic biomass is often accompanied by lots of lignin residues. Catalytic fast pyrolysis (CFP) is a high-throughput method to convert lignin to aromatics and phenolics. In order to optimize catalytic performance, conventional zeolite catalysts often need to have mesostructural modification. Here, based on hierarchical zeolite (HZ), a novel micro-mesoporous composite zeolite was obtained by redeposition under mild conditions. The conversion of two industrial lignin residues, Kraft Lignin (KL) and Pyrolytic Lignin (PL), was investigated. Interestingly, the hierarchical sample was more suitable for the case of higher concentration of primary pyrolysis products such as CFP of PL, with aromatics yield of 12.7 wt % and a monocyclic aromatic hydrocarbons (MAHs) to polycyclic aromatic hydrocarbons (PAHs) mass ratio of 4.86. The mesoporous composite zeolite possessed a better PAHs suppression capability as M/P reached 6.06, and was suitable for low reactants’ concentration and high oxygen content, such as KL CFP, with a higher aromatics yield of 3.3 wt % and M/P of 5.12. These results were compared with poplar sawdust as actual biomass, and mesoporous samples were both highly efficient catalysts with MAHs yield over 10 wt % and M/P around 5.

Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1051
Author(s):  
Laizhi Sun ◽  
Zhibin Wang ◽  
Lei Chen ◽  
Shuangxia Yang ◽  
Xinping Xie ◽  
...  

Mo-modified ZSM-5 catalysts were prepared and used to produce aromatic hydrocarbons during catalytic fast pyrolysis (CFP) of biomass. The composition and distribution of aromatics were investigated on pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS). The reaction factors, such as the Mo content, the reaction temperature and the catalyst/biomass mass ratio, were also optimized. It was found that the 10Mo/ZSM-5 catalyst displayed the best activity in improving the production of monocyclic aromatic hydrocarbons (MAHs) and decreasing the yield of polycyclic aromatic hydrocarbons (PAHs) at 600 °C and with a catalyst/biomass ratio of 10. Furthermore, according to catalyst characterization and the experiment results, the aromatics formation mechanism over Mo/ZSM-5 catalysts was also summarized and proposed.


2021 ◽  
Vol 14 ◽  
pp. 1-11
Author(s):  
Haryanti Yahaya ◽  
Rozzeta Dollah ◽  
Norsahika Mohd Basir ◽  
Rohit Karnik ◽  
Halimaton Hamdan

Oil palm empty fruit bunch (EFB) biomass is a potential source of renewable energy. Catalytic fast-pyrolysis batch process was initially performed to convert oil palm EFB into bio-oil, followed by its refinement to jet bio-fuel. Crystalline zeolites A and Y; synthesised from rice husk ash (RHA), were applied as heterogeneous catalysts. The catalytic conversion of oil palm EFB to bio-oil was conducted at a temperature range of 320-400°C with zeolite A catalyst loadings of 0.6 - 3.0 wt%. The zeolite catalysts were characterised by XRD, FTIR and FESEM. The bio-oil and jet bio-fuel products were analysed using GC-MS and FTIR. The batch fast-pyrolysis reaction was optimised at 400°C with a catalyst loading of 1.0 wt%, produced 42.7 wt% yields of liquid bio-oil, 35.4 wt% char and 21.9 wt% gaseous products. Analysis by GCMS indicates the compound distribution of the liquid bio-oil are as follows: hydrocarbons (23%), phenols (61%), carboxylic acids (0.7%), ketones (2.7%), FAME (7.7%) and alcohols (0.8%). Further refinement of the liquid bio-oil by catalytic hydrocracking over zeolite Y produced jet bio-fuel, which contains 63% hydrocarbon compounds (C8-C18) and 16% of phenolic compounds.


2018 ◽  
Vol 6 (4) ◽  
pp. 728-736 ◽  
Author(s):  
Zhaoying Li ◽  
Zhaoping Zhong ◽  
Bo Zhang ◽  
Jiawen Gu ◽  
Kun Shi

Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 935 ◽  
Author(s):  
Ioannis Charisteidis ◽  
Polykarpos Lazaridis ◽  
Apostolos Fotopoulos ◽  
Eleni Pachatouridou ◽  
Leonidas Matsakas ◽  
...  

Lignin, one of the three main structural biopolymers of lignocellulosic biomass, is the most abundant natural source of aromatics with a great valorization potential towards the production of fuels, chemicals, and polymers. Although kraft lignin and lignosulphonates, as byproducts of the pulp/paper industry, are available in vast amounts, other types of lignins, such as the organosolv or the hydrolysis lignin, are becoming increasingly important, as they are side-streams of new biorefinery processes aiming at the (bio)catalytic valorization of biomass sugars. Within this context, in this work, we studied the thermal (non-catalytic) and catalytic fast pyrolysis of softwood (spruce) and hardwood (birch) lignins, isolated by a hybrid organosolv–steam explosion biomass pretreatment method in order to investigate the effect of lignin origin/composition on product yields and lignin bio-oil composition. The catalysts studied were conventional microporous ZSM-5 (Zeolite Socony Mobil–5) zeolites and hierarchical ZSM-5 zeolites with intracrystal mesopores (i.e., 9 and 45 nm) or nano-sized ZSM-5 with a high external surface. All ZSM-5 zeolites were active in converting the initially produced via thermal pyrolysis alkoxy-phenols (i.e., of guaiacyl and syringyl/guaiacyl type for spruce and birch lignin, respectively) towards BTX (benzene, toluene, xylene) aromatics, alkyl-phenols and polycyclic aromatic hydrocarbons (PAHs, mainly naphthalenes), with the mesoporous ZSM-5 exhibiting higher dealkoxylation reactivity and being significantly more selective towards mono-aromatics compared to the conventional ZSM-5, for both spruce and birch lignin.


RSC Advances ◽  
2020 ◽  
Vol 10 (39) ◽  
pp. 23331-23340
Author(s):  
Kai Li ◽  
Dana Bolatibieke ◽  
Shi-guan Yang ◽  
Bo Wang ◽  
Dong-hong Nan ◽  
...  

A new method to co-produce aromatic hydrocarbons and a supercapacitor material from the catalytic fast pyrolysis of soy sauce residue has been developed.


Sign in / Sign up

Export Citation Format

Share Document