scholarly journals Metallophthalocyanines as Catalysts in Aerobic Oxidation

Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 122
Author(s):  
Carlos J. Pereira Monteiro ◽  
Maria Amparo Ferreira Faustino ◽  
Maria da Graça Pinho Morgado Silva Neves ◽  
Mário M. Quialheiro Simões ◽  
Enrico Sanjust

The first remarkable property associated to metallophthalocyanines (MPcs) was their chemical “inertness”, which made and make them very attractive as stable and durable industrial dyes. Nevertheless, their rich redox chemistry was also explored in the last decades, making available a solid and detailed knowledge background for further studies on the suitability of MPcs as redox catalysts. An overlook of MPcs and their catalytic activity with dioxygen as oxidants will be discussed here with a special emphasis on the last decade. The mini-review begins with a short introduction to phthalocyanines, from their structure to their main features, going then through the redox chemistry of metallophthalocyanines and their catalytic activity in aerobic oxidation reactions. The most significant systems described in the literature comprise the oxidation of organosulfur compounds such as thiols and thiophenes, the functionalization of alkyl arenes, alcohols, olefins, among other substrates.

Carbon ◽  
2017 ◽  
Vol 114 ◽  
pp. 383-392 ◽  
Author(s):  
Mehulkumar A. Patel ◽  
Feixiang Luo ◽  
Keerthi Savaram ◽  
Pavel Kucheryavy ◽  
Qiaoqiao Xie ◽  
...  

2019 ◽  
Vol 9 (3) ◽  
pp. 811-821 ◽  
Author(s):  
Zhao-Meng Wang ◽  
Li-Juan Liu ◽  
Bo Xiang ◽  
Yue Wang ◽  
Ya-Jing Lyu ◽  
...  

The catalytic activity decreases as –(SiO)3Mo(OH)(O) > –(SiO)2Mo(O)2 > –(O)4–MoO.


2018 ◽  
Author(s):  
Asim Maity ◽  
Sung-Min Hyun ◽  
Alan Wortman ◽  
David Powers

<p>Hypervalent iodine(V) reagents, such as Dess-Martin periodinane (DMP) and 2-iodoxybenzoic acid (IBX), are broadly useful oxidants in chemical synthesis. Development of strategies to access these reagents from O2 would immediately enable use of O2 as a terminal oxidant in a broad array of substrate oxidation reactions. Recently we disclosed the aerobic synthesis of I(III) reagents by intercepting reactive oxidants generated during aldehyde autoxidation. Here, we couple aerobic oxidation of iodobenzenes with disproportionation of the initially generated I(III) compounds to generate I(V) reagents. The aerobically generated I(V) reagents exhibit substrate oxidation chemistry analogous to that of DMP. Further, the developed aerobic generation of I(V) has enabled the first application of I(V) intermediates in aerobic oxidation catalysis.</p>


Author(s):  
LiXin Chen ◽  
Zi Wen ◽  
Zhi Wen Chen ◽  
Qing Jiang ◽  
Chandra Veer Singh

The activation mechanism of O2 molecules plays a vital role in the development of catalysts for aerobic oxidation reactions. To gain insights into the activation mechanism of O2, the square...


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 95
Author(s):  
Amarajothi Dhakshinamoorthy ◽  
Eva Montero Lanzuela ◽  
Sergio Navalon ◽  
Hermenegildo Garcia

Metal organic frameworks (MOFs) are porous crystalline solids whose frameworks are constituted by metal ions/nodes with rigid organic linkers leading to the formation of materials having high surface area and pore volume. One of the unique features of MOFs is the presence of coordinatively unsaturated metal sites in their crystalline lattice that can act as Lewis acid sites promoting organic transformations, including aerobic oxidation reactions of various substrates such as hydrocarbons, alcohols, and sulfides. This review article summarizes the existing Co-based MOFs for oxidation reactions organized according to the nature of substrates like hydrocarbon, alcohol, olefin, and water. Both aerobic conditions and peroxide oxidants are discussed. Emphasis is placed on comparing the advantages of using MOFs as solid catalysts with respect to homogeneous salts in terms of product selectivity and long-term stability. The final section provides our view on future developments in this field.


2014 ◽  
Vol 3 (1) ◽  
pp. 99-110 ◽  
Author(s):  
Hannes Alex ◽  
Norbert Steinfeldt ◽  
Klaus Jähnisch ◽  
Matthias Bauer ◽  
Sandra Hübner

AbstractNanoparticles (NP) have specific catalytic properties, which are influenced by parameters like their size, shape, or composition. Bimetallic NPs, composed of two metal elements can show an improved catalytic activity compared to the monometallic NPs. We, herein, report on the selective aerobic oxidation of benzyl alcohol catalyzed by unsupported Pd/Au and Pd NPs at atmospheric pressure. NPs of varying compositions were synthesized and characterized by UV/Vis spectroscopy, transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). The NPs were tested in the model reaction regarding their catalytic activity, stability, and recyclability in batch and continuous procedure. Additionally, in situ extended X-ray absorption fine structure (EXAFS) measurements were performed in order to get insight in the process during NP catalysis.


2010 ◽  
Vol 46 (35) ◽  
pp. 6476 ◽  
Author(s):  
Amarajothi Dhakshinamoorthy ◽  
Mercedes Alvaro ◽  
Hermenegildo Garcia

Sign in / Sign up

Export Citation Format

Share Document