scholarly journals Zn-P Co-Modified Hierarchical ZSM-5 Zeolites Directly Synthesized via Dry Gel Conversion for Enhanced Methanol to Aromatics Reaction

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1388
Author(s):  
Youhe Wang ◽  
Zhihong Li ◽  
Chang Dai ◽  
Ningning Du ◽  
Tingting Li ◽  
...  

A unique method to prepare Zn-P co-modified hierarchical ZSM-5 zeolites was developed. The ZSM-5 zeolite was directly synthesized by a dry gel conversion without adding any templates or seeds. Afterwards, the hierarchical structure was endowed to the ZSM-5 zeolite by the sequential desilication-dealumination. Zn and P species were then introduced into the hierarchical ZSM-5 zeolites by the impregnation method and their activity in methanol to aromatics process was investigated. It was found that the Zn-P co-modified hierarchical ZSM-5 zeolites possessed more Zn-related Lewis acid sites, and the ratio of Zn(OH)+/ZnO was increased. The catalytic evaluation results revealed that the benzene, toluene and xylene (BTX) and aromatics selectivity were significantly improved from 20.59% and 29.41% of pristine ZSM-5 zeolite to 28.12% and 41.88% of Zn-P co-modified hierarchical counterpart (1.5Zn0.3P/HZSM-5), respectively. Owing to the introduced highly stable Zn-P co-modified hierarchical structures, the lifetime (conversion not less than 99%) of ZSM-5 zeolite during methanol to aromatics reaction was increased from 6 h to 18 h.

Author(s):  
Sugeng Triwahyono ◽  
Aishah Abdul Jalil ◽  
Che Rozid Mamat

A series of nano ZnO/MoO3-ZrO2 catalysts with different ZnO loading (1.0, 2.5, 5.0 wt%) were prepared by impregnation method for n-pentane photoisomerization under hydrogen or nitrogen atmosphere. The properties of the catalysts were characterized with X-ray Diffraction (XRD), Brunauer Emmett Teller (BET), Transmission Electron microscope (TEM) and FTIR. The XRD result showed that the fraction of tetragonal phase of ZnO/MoO3-ZrO2 was about 0.67 for all samples. While, the specific BET surface area was about 24 m2/g. Pyridine adsorbed FTIR results showed that all samples possessed high concentration of strong Lewis acid sites and small concentration of weak Bronsted acid sites. The interaction of hydrogen and surface samples at 298-523 K formed protonic acid sites with the concomitant of the partial elimination of Lewis acid sites. Whereas no changes of the concentration of acid sites were observed in the presence of nitrogen atmosphere. The activity of all samples in the n-pentane photoisomerization was strongly determined by the presence of hydrogen gas. In fact no activity was observed in the absence of hydrogen________________________________________GRAPHICAL ABSTRACT


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 887
Author(s):  
Rujeeluk Khumho ◽  
Satit Yousatit ◽  
Chawalit Ngamcharussrivichai

5-Hydroxymethylfurfural (HMF) is one of the most important lignocellulosic biomass-derived platform molecules for production of renewable fuel additives, liquid hydrocarbon fuels, and value-added chemicals. The present work developed niobium oxides (Nb2O5) supported on mesoporous carbon/silica nanocomposite (MCS), as novel solid base catalyst for synthesis of HMF via one-pot glucose conversion in a biphasic solvent. The MCS material was prepared via carbonization using natural rubber dispersed in hexagonal mesoporous silica (HMS) as a precursor. The Nb2O5 supported on MCS (Nb/MCS) catalyst with an niobium (Nb) loading amount of 10 wt.% (10-Nb/MCS) was characterized by high dispersion, and so tiny crystallites of Nb2O5, on the MCS surface, good textural properties, and the presence of Bronsted and Lewis acid sites with weak-to-medium strength. By varying the Nb loading amount, the crystallite size of Nb2O5 and molar ratio of Bronsted/Lewis acidity could be tuned. When compared to the pure silica HMS-supported Nb catalyst, the Nb/MCS material showed a superior glucose conversion and HMF yield. The highest HMF yield of 57.5% was achieved at 93.2% glucose conversion when using 10-Nb/MCS as catalyst (5 wt.% loading with respect to the mass of glucose) at 190 °C for 1 h. Furthermore, 10-Nb/MCS had excellent catalytic stability, being reused in the reaction for five consecutive cycles during which both the glucose conversion and HMF yield were insignificantly changed. Its superior performance was ascribed to the suitable ratio of Brønsted/Lewis acid sites, and the hydrophobic properties generated from the carbon moieties dispersed in the MCS nanocomposite.


Zeolites ◽  
1997 ◽  
Vol 19 (4) ◽  
pp. 288-296 ◽  
Author(s):  
G.L. Woolery ◽  
G.H. Kuehl ◽  
H.C. Timken ◽  
A.W. Chester ◽  
J.C. Vartuli

1992 ◽  
Vol 46 (1) ◽  
pp. 199-207 ◽  
Author(s):  
S. Ishida ◽  
S. Imamura ◽  
F. Ren ◽  
Y. Tatematsu ◽  
Y. Fujimura

1998 ◽  
Vol 16 (1) ◽  
pp. 59-70 ◽  
Author(s):  
Tsion Avital ◽  
Gerald C. Cupchik

A series of four experiments were conducted to examine viewer perceptions of three sets of five nonrepresentational paintings. Increased complexity was embedded in the hierarchical structure of each set by carefully selecting colors and ordering them in each successive painting according to certain rules of transformation which created hierarchies. Experiment 1 supported the hypothesis that subjects would discern the hierarchical complexity underlying the sets of paintings. In Experiment 2 viewers rated the paintings on collative (complexity, disorder) and affective (pleasing, interesting, tension, and power) scales, and a factor analysis revealed that affective ratings were tied to complexity (Factor 1) but not to disorder (Factor 2). In Experiment 3, a measure of exploratory activity (free looking time) was correlated with complexity (Factor 1) but not with disorder (Factor 2). Multidimensional scaling was used in Experiment 4 to examine perceptions of the paintings seen in pairs. Dimension 1 contrasted Soft with Hard-Edged paintings, while Dimension 2 reflected the relative separation of figure from ground in these paintings. Together these results show that untrained viewers can discern hierarchical complexity in paintings and that this quality stimulates affective responses and exploratory activity.


2016 ◽  
Vol 78 (6) ◽  
Author(s):  
Djoko Hartanto ◽  
Lai Sin Yuan ◽  
Sestriana Mutia Sari ◽  
Djarot Sugiarso ◽  
Irmina Kris Murwarni ◽  
...  

Lewis and Brönsted acidity were studied on ZSM-5 with combination of pyridine adsorption and FTIR vibration, ZSM-5 synthesized using kaolin Bangka Indonesia with an increase in the molar ratio of Si/Al 30-60 without pre-treatment and without organic templates and with seeds silicalite. Interestingly, the intensity of the infrared showed an increase of band vibration pyridine as absorbed Brönsted and Lewis acid sites in a molar ratio increase of Si/Al in ZSM-5, indicating an increase in the number of silanol (Brönsted acid) and deformed silica (Lewis acid) because the amount of Aluminum in ZSM-5 decrease with increase Si/Al but amount acidity increase. 29Si and 27Al MAS NMR analysis was supported by the results of infrared to indicate that all of the aluminum atom is coordinated with their neighbors are the same in ordering the ZSM-5 framework and 27Al MAS NMR showed a sharp peak of all the variations of Si/Al except the Si/Al 30 shows a low peak area. XRD analysis supported that the ZSM-5 structure formed is pure and crystal and a decrease in crystallinity proven for more than Si/Al 50, that defects silica occurs in ZSM-5, this corresponds to the growing number of Lewis acid sites caused by defects silica described the infrared results.


Sign in / Sign up

Export Citation Format

Share Document