scholarly journals Synthesis, Characterization and CO Tolerance Evaluation in PEMFCs of Pt2RuMo Electrocatalysts

Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 61 ◽  
Author(s):  
Martin González-Hernández ◽  
Ermete Antolini ◽  
Joelma Perez

Pt2RuMo/C catalysts were synthesized by the modified polyol method in the presence and absence of Li(C2H5)3BH (LBH), annealed at 600 °C under H2 atmosphere to improve the reduction of Pt and Ru to provide stronger interactions between Mo and another metals. LBH affected the physico-chemical characteristics of Pt2RuMo, that is, in the presence of LBH an increment of Mo(IV) amount and a decrease in the PtRu alloying degree were observed. The catalytic activity for hydrogen oxidation in the presence and absence of CO (CO tolerance) of the Pt2RuMo/C catalysts as anodes in polymer electrolyte membrane fuel cells (PEMFCs) was compared to that of a commercial PtRu/C catalyst. The results indicated that the CO tolerance increased with an increase in Mo(IV) content, but the stability increased with an increment of the amount of Ru oxides in the catalysts.

Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1425 ◽  
Author(s):  
Min ◽  
Jeffery ◽  
Kim ◽  
Jung

Since trace amounts of CO in H2 gas produced by steam reforming of methane causes severe poisoning of Pt-based catalysts in polymer electrolyte membrane fuel cells (PEMFCs), research has been mainly devoted to exploring CO-tolerant catalysts. To test the electrochemical property of CO-tolerant catalysts, chronoamperometry is widely used under a CO/H2 mixture gas atmosphere as an essential method. However, in most cases of catalysts with high CO tolerance, the conventional chronoamperometry has difficulty in showing the apparent performance difference. In this study, we propose a facile and precise test protocol to evaluate the CO tolerance via a combination of short-term chronoamperometry and a hydrogen oxidation reaction (HOR) test. The degree of CO poisoning is systematically controlled by changing the CO adsorption time. The HOR polarization curve is then measured and compared with that measured without CO adsorption. When the electrochemical properties of PtRu alloy catalysts with different atomic ratios of Pt to Ru are investigated, contrary to conventional chronoamperometry, these catalysts exhibit significant differences in their CO tolerance at certain CO adsorption times. The present work will facilitate the development of catalysts with extremely high CO tolerance and provide insights into the improvement of electrochemical methods.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 597
Author(s):  
Martin González-Hernández ◽  
Ermete Antolini ◽  
Joelma Perez

Pt electrocatalysts supported on pristine graphene nanosheets (GNS) and nitrogen-doped graphene nanoplatelets (N-GNP) were prepared through the ethylene glycol process, and a comparison of their CO tolerance and stability as anode materials in polymer electrolyte membrane fuel cells (PEMFCs) with those of the conventional carbon (C)-supported Pt was made. Repetitive potential cycling in a half cell showed that Pt/GNS catalysts have the highest stability, in terms of the highest sintering resistance (lowest particle growth) and the lowest electrochemically active surface area loss. By tests in PEMFCs, the Pt/N-GNP catalyst showed the highest CO tolerance, while the poisoning resistance of Pt/GNS was lower than that of Pt/C. The higher CO tolerance of Pt/N-GNP than that of Pt/GNS was ascribed to the presence of a defect in graphene, generated by N-doping, decreasing CO adsorption energy.


Author(s):  
Katherine C. Hess ◽  
William K. Epting ◽  
Shawn Litster

This paper presents the development of a new method for characterizing the electrochemistry and transport phenomena in the porous electrodes of polymer electrolyte membrane fuel cells (PEMFCs). The new method uses a unique microstructured electrode scaffold (MES) that provide an architecture for obtaining measurements at discrete points through the thickness of an electrode. This paper reports on the design, fabrication and initial testing of an MES for measuring ionic potential across the thickness of a PEMFC’s cathode. The new fuel cell hardware and reference electrodes (REs), which gather electrolyte potential measurements through the thickness of the electrode via the MES, have been tested for accuracy and repeatability. The use of hydrogen oxidation reaction (HOR) REs versus oxygen reduction reaction (ORR) REs is analyzed and discussed. Polarization data was also gathered and the REs are used to separate the half-cell potentials. Finally, the preliminary fabrication of an MES and a micro-structural analysis are discussed.


RSC Advances ◽  
2015 ◽  
Vol 5 (92) ◽  
pp. 75218-75228 ◽  
Author(s):  
A. Arunchander ◽  
S. Gouse Peera ◽  
V. Parthiban ◽  
Srinu Akula ◽  
Tintula Kottakkat ◽  
...  

Pt-DENs have been synthesized and immobilized on ester and anhydride functionalized Vulcan XC-72R. These catalysts are utilized as fuel cell cathodes and significant enhanced performances have been achieved with the Pt loading of 0.2 mg cm−2.


2015 ◽  
Vol 6 (6) ◽  
pp. 3321-3328 ◽  
Author(s):  
Hyung-Suk Oh ◽  
Hong Nhan Nong ◽  
Tobias Reier ◽  
Manuel Gliech ◽  
Peter Strasser

Ir nanodendrites (Ir-ND) supported on antimony doped tin oxide (ATO) show enhanced catalytic activity and stability for oxygen evolution reaction (OER) in polymer electrolyte membrane (PEM) water electrolysis.


RSC Advances ◽  
2017 ◽  
Vol 7 (14) ◽  
pp. 8453-8459 ◽  
Author(s):  
Qi Wang ◽  
Guoxiong Wang ◽  
Hualong Tao ◽  
Zhiqiang Li ◽  
Lei Han

A PtRu/PtNi/C catalyst shows higher CO tolerance than PtNi/C, PtNi–Ru/C and PtRu/C catalysts due to the synergistic effect between the PtRu surface and PtNi core.


Author(s):  
Ilgar Ayyubov ◽  
Adriana Vulcu ◽  
Camelia Berghian-Grosan ◽  
Emília Tálas ◽  
Irina Borbáth ◽  
...  

AbstractBall milling is a relative simple and promising technique for preparation of inorganic oxide–carbon type of composites. Novel TiO2-C and Ti0.8Mo2O2-C type of composites containing multi-layer graphene were prepared by ball milling of graphite in order to get electrocatalyst supports for polymer electrolyte membrane fuel cells. Starting rutile TiO2 was obtained from P25 by heat treatment. Carbon-free Ti0.8Mo2O2 mixed oxide, prepared using our previously developed multistep sol–gel method, does not meet the requirements for materials of electrocatalyst support, therefore parent composites with Ti0.8Mo2O2/C = 75/25, 90/10 and 95/5 mass ratio were prepared using Black Pearls 2000. XRD study of parent composites proved that the oxide part existed in rutile phase which is prerequisite of the incorporation of oxophilic metals providing CO tolerance for the electrocatalyst. Ball milling of TiO2 or parent composites with graphite resulted in catalyst supports with enhanced carbon content and with appropriate specific surface areas. XRD and Raman spectroscopic measurements indicated the changes of graphite during the ball milling procedure while the oxide part remained intact. TEM images proved that platinum existed in the form of highly dispersed nanoparticles on the surface of both the Mo-free and of Mo-containing electrocatalyst. Electrocatalytic performance of the catalysts loaded with 20 wt% Pt was studied by cyclic voltammetry, COads-stripping voltammetry done before and after the 500-cycle stability test, as well as by the long-term stability test involving 10,000 polarization cycles. Enhanced CO tolerance and slightly lower stability comparing to Pt/TiO2-C was demonstrated for Pt/Ti0.8Mo2O2-C catalysts.


Sign in / Sign up

Export Citation Format

Share Document