scholarly journals Introduction of Mouse Embryonic Fibroblasts into Early Embryos Causes Reprogramming and (Con)fusion

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 772
Author(s):  
Pierre Savatier

The reprogramming of somatic cell nuclei to achieve pluripotency is one of the most important biological discoveries of the last few decades [...]

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1534
Author(s):  
Krystyna Żyżyńska-Galeńska ◽  
Jolanta Karasiewicz ◽  
Agnieszka Bernat

We would like to address the issues raised by Pierre Savatier in “Introduction of Mouse Embryonic Fibroblasts into Early Embryos Causes Reprogramming and (Con)Fusion” [...]


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Claudia Vivori ◽  
Panagiotis Papasaikas ◽  
Ralph Stadhouders ◽  
Bruno Di Stefano ◽  
Anna Ribó Rubio ◽  
...  

Abstract Background Somatic cell reprogramming is the process that allows differentiated cells to revert to a pluripotent state. In contrast to the extensively studied rewiring of epigenetic and transcriptional programs required for reprogramming, the dynamics of post-transcriptional changes and their associated regulatory mechanisms remain poorly understood. Here we study the dynamics of alternative splicing changes occurring during efficient reprogramming of mouse B cells into induced pluripotent stem (iPS) cells and compare them to those occurring during reprogramming of mouse embryonic fibroblasts. Results We observe a significant overlap between alternative splicing changes detected in the two reprogramming systems, which are generally uncoupled from changes in transcriptional levels. Correlation between gene expression of potential regulators and specific clusters of alternative splicing changes enables the identification and subsequent validation of CPSF3 and hnRNP UL1 as facilitators, and TIA1 as repressor of mouse embryonic fibroblasts reprogramming. We further find that these RNA-binding proteins control partially overlapping programs of splicing regulation, involving genes relevant for developmental and morphogenetic processes. Conclusions Our results reveal common programs of splicing regulation during reprogramming of different cell types and identify three novel regulators of this process and their targets.


PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e84062 ◽  
Author(s):  
Yu-Cheng Tu ◽  
Duen-Yi Huang ◽  
Shine-Gwo Shiah ◽  
Jang-Shiun Wang ◽  
Wan-Wan Lin

2008 ◽  
Vol 134 (4) ◽  
pp. A-86
Author(s):  
Engda G. Hagos ◽  
Amr Ghaleb ◽  
W Brian Dalton ◽  
Jonathan P. Katz ◽  
Klaus H. Kaestner ◽  
...  

Author(s):  
Hairong Xu ◽  
Yanhong Zhou ◽  
Kathleen A. Coughlan ◽  
Ye Ding ◽  
Shaobin Wang ◽  
...  

2017 ◽  
Vol 491 (3) ◽  
pp. 733-739 ◽  
Author(s):  
Jihyun Lee ◽  
Goowon Yang ◽  
Young-Joo Kim ◽  
Quynh Hoa Tran ◽  
Wonchae Choe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document