scholarly journals Deciphering the Role of Ion Channels in Early Defense Signaling against Herbivorous Insects

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2219
Author(s):  
Akanksha Gandhi ◽  
Rupesh Kariyat ◽  
Amaravadhi Harikishore ◽  
Marzieh Ayati ◽  
Anirban Bhunia ◽  
...  

Plants and insect herbivores are in a relentless battle to outwit each other. Plants have evolved various strategies to detect herbivores and mount an effective defense system against them. These defenses include physical and structural barriers such as spines, trichomes, cuticle, or chemical compounds, including secondary metabolites such as phenolics and terpenes. Plants perceive herbivory by both mechanical and chemical means. Mechanical sensing can occur through the perception of insect biting, piercing, or chewing, while chemical signaling occurs through the perception of various herbivore-derived compounds such as oral secretions (OS) or regurgitant, insect excreta (frass), or oviposition fluids. Interestingly, ion channels or transporters are the first responders for the perception of these mechanical and chemical cues. These transmembrane pore proteins can play an important role in plant defense through the induction of early signaling components such as plasma transmembrane potential (Vm) fluctuation, intracellular calcium (Ca2+), and reactive oxygen species (ROS) generation, followed by defense gene expression, and, ultimately, plant defense responses. In recent years, studies on early plant defense signaling in response to herbivory have been gaining momentum with the application of genetically encoded GFP-based sensors for real-time monitoring of early signaling events and genetic tools to manipulate ion channels involved in plant-herbivore interactions. In this review, we provide an update on recent developments and advances on early signaling events in plant-herbivore interactions, with an emphasis on the role of ion channels in early plant defense signaling.

Author(s):  
Sudisha Jogaiah ◽  
Sharathchandra Ramasandra Govind ◽  
Huntrike Shekar Shetty

Author(s):  
Vibha Gulyani Checker ◽  
Hemant Ritturaj Kushwaha ◽  
Pragati Kumari ◽  
Saurabh Yadav

2011 ◽  
Vol 6 (8) ◽  
pp. 1114-1116 ◽  
Author(s):  
Caleb Knepper ◽  
Elizabeth A. Savory ◽  
Brad Day

2018 ◽  
Vol 115 (20) ◽  
pp. 5199-5204 ◽  
Author(s):  
Ching-Wen Tan ◽  
Michelle Peiffer ◽  
Kelli Hoover ◽  
Cristina Rosa ◽  
Flor E. Acevedo ◽  
...  

Obligate symbioses occur when organisms require symbiotic relationships to survive. Some parasitic wasps of caterpillars possess obligate mutualistic viruses called “polydnaviruses.” Along with eggs, wasps inject polydnavirus inside their caterpillar hosts where the hatching larvae develop inside the caterpillar. Polydnaviruses suppress the immune systems of their caterpillar hosts, which enables egg hatch and wasp larval development. It is unknown whether polydnaviruses also manipulate the salivary proteins of the caterpillar, which may affect the elicitation of plant defenses during feeding by the caterpillar. Here, we show that a polydnavirus of the parasitoid Microplitis croceipes, and not the parasitoid larva itself, drives the regulation of salivary enzymes of the caterpillar Helicoverpa zea that are known to elicit tomato plant-defense responses to herbivores. The polydnavirus suppresses glucose oxidase, which is a primary plant-defense elicitor in the saliva of the H. zea caterpillar. By suppressing plant defenses, the polydnavirus allows the caterpillar to grow at a faster rate, thus improving the host suitability for the parasitoid. Remarkably, polydnaviruses manipulate the phenotypes of the wasp, caterpillar, and host plant, demonstrating that polydnaviruses play far more prominent roles in shaping plant–herbivore interactions than ever considered.


2021 ◽  
Author(s):  
Yukiyo Yamasaki ◽  
Hiroka Sumioka ◽  
Mayu Takiguchi ◽  
Takuya Uemura ◽  
Yuka Kihara ◽  
...  

2013 ◽  
Vol 161 (4) ◽  
pp. 2146-2158 ◽  
Author(s):  
Jinman Liu ◽  
Pingtao Ding ◽  
Tongjun Sun ◽  
Yukino Nitta ◽  
Oliver Dong ◽  
...  

2021 ◽  
Author(s):  
Meret Huber ◽  
Thomas Roder ◽  
Sandra Irmisch ◽  
Alexander Riedel ◽  
Saskia Gablenz ◽  
...  

Gut enzymes can metabolize plant defense metabolites and thereby affect the growth and fitness of insect herbivores. Whether these enzymes also influence herbivore behavior and feeding preference is largely unknown. We studied the metabolization of taraxinic acid β-D-glucopyranosyl ester (TA-G), a sesquiterpene lactone of the common dandelion (Taraxacum officinale) that deters its major root herbivore, the common cockchafer larva (Melolontha melolontha). We demonstrate that TA-G is rapidly deglycosylated and conjugated to glutathione in the insect gut. A broad-spectrum M. melolontha β-glucosidase, Mm_bGlc17, is sufficient and necessary for TA-G deglycosylation. Using plants and insect RNA interference, we show that Mm_bGlc17 reduces TA-G toxicity. Furthermore, Mm_bGlc17 is required for the preference of M. melolontha larvae for TA-G deficient plants. Thus, herbivore metabolism modulates both the toxicity and deterrence of a plant defense metabolite. Our work illustrates the multifacteted roles of insect digestive enzymes as mediators of plant-herbivore interactions.


1991 ◽  
Vol 46 (11-12) ◽  
pp. 969-981 ◽  
Author(s):  
Wolfgang Knogge

The complex biological phenomenon “resistance” can be reduced to single Mendelian traits acting on both the plant and the pathogen side in a number of pathosystems. According to the “gene-for-gene hypothesis”, the outcome of a plant/pathogen interaction in these cases is incompatibility if a plant carrying a particular resistance gene and a pathogen with the complementary avirulence gene meet. This suggests a causal role of resistance genes in a recognition process initiating active plant defense responses. Fundamentally different strategies are followed to identify these genes molecularly depending on the plant and pathogen species involved. Fungal diseases of crop plants, especially those of cereals, cause dramatic yield losses worldwide. It is assumed that a molecular characterization of plant genes conferring resistance to fungal pathogens will lead to a better understanding of the plant defense system in general permitting the development of new methods of crop plant protection.


2013 ◽  
Vol 8 (3) ◽  
pp. e23317 ◽  
Author(s):  
Lucie Salvaudon ◽  
Consuelo M. De Morae ◽  
Jun-Yi Yang ◽  
Nam-Hai Chua ◽  
Mark C. Mescher

Sign in / Sign up

Export Citation Format

Share Document