volatile emission
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 25)

H-INDEX

32
(FIVE YEARS 4)

2021 ◽  
Vol 12 ◽  
Author(s):  
Jamin Ali ◽  
Anca D. Covaci ◽  
Joe M. Roberts ◽  
Islam S. Sobhy ◽  
William D. J. Kirk ◽  
...  

There is a need to develop new ways of protecting plants against aphid attack. Here, we investigated the effect of a plant defence activator, cis-jasmone (CJ), in a range of cultivars of Brassica napus, Brassica rapa and Brassica oleracea. Plants were sprayed with cis-jasmone or blank formulation and then tested with peach potato aphids (Myzus persicae Sulzer) (Hemiptera: Aphididae) and their parasitoid Diaeretiella rapae (M'Intosh) (Hymenoptera: Braconidae). CJ treated plants had significantly lower aphid settlement than control plants in a settlement bioassay. Conversely, in a foraging bioassay, D. rapae parasitoids spent a significantly longer time foraging on CJ treated plants. Our results reveal that CJ treatment makes plants less attractive to and less suitable for M. persicae but more attractive to D. rapae in a range of brassica cultivars. It is likely that these effects are due to changes in volatile emission indicating activation of defence and presence of conspecific competitors to aphids but presence of prey to parasitoids. Increases in volatile emission were found in CJ induced plants but varied with genotype. Among the synthetic volatile compounds that were induced in the headspace of CJ treated brassica cultivars, methyl isothiocyanate, methyl salicylate and cis-jasmone were most repellent to aphids. These results build on earlier studies in Arabidopsis and show that tritrophic interactions are influenced by CJ in a wide range of brassica germplasm. The implication is that CJ is a promising treatment that could be used in brassica crops as part of an integrated pest management system.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110352
Author(s):  
Wenjing Xia ◽  
Suying Fan ◽  
Tao Xu

The objective of this study is to quantitatively evaluate inhibitory action of halogen-free fire retardants (HFR) on combustion properties and volatile emission of such bituminous components as saturates, aromatics, resins, and asphaltenes (SARA). Thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR) tests were performed on SARA fractions containing matched fire retardants, respectively, and thermal kinetics parameters based on TG curves and functional and structural indices from FTIR spectra were calculated, respectively. The selected fire retardants have not affected the combustion process of SARA fractions, but the combustion temperature intervals are elevated and combustion progresses are retarded. Also, the char yields of SARA fractions are obviously increased by the matched fire retardants, improving their heat stability. The activation energy is elevated because of the added fire retardants, indicating combustion resistance of SARA fractions become larger. Additionally, the matched fire retardants inhibit the toxic gas emission in the combustion process of SARA fractions, but have few effects on gaseous product constituents. H2O and CO2 are identified as two typical released gases in various combustion phases of each SARA fraction. Finally, the added hydroxide play a role of fire retardants through cooling, dilution, adsorption, and neutralization, and the generated active oxide facilitates the expandable graphite (EG) and matrix to form densified and thick carbon layer. These suppress the volatile emission, and hinder the heat conduction and oxygen supply. Fire retardant composite exhibits the synergistic effect of fire retardancy and smoke inhibition in the combustion process of SARA fractions.


2021 ◽  
Vol 47 (2) ◽  
pp. 175-191
Author(s):  
Lucille T. S. Chrétien ◽  
Hessel van der Heide ◽  
Liana O. Greenberg ◽  
David Giron ◽  
Marcel Dicke ◽  
...  

AbstractPlants in the flowering stage need to ensure reproduction by protecting themselves from attack and by preserving interactions with mutualist pollinators. When different plant mutualists are using the same type of cues, such as volatile compounds, attraction of parasitoids and pollinators may trade off. To explore this, we compared volatile emission of Brassica nigra plants in response to single or dual attack on their inflorescences. Additionally, we recorded flower visitation by pollinators and the attraction of parasitoids in the greenhouse and/or field. Brassica nigra were exposed in the flowering stage to one or two of the following three attackers: Brevicoryne brassicae aphids, Pieris brassicae caterpillars, and Xanthomonas campestris pv. raphani bacteria. We found that single attack by caterpillars, and dual attack by caterpillars plus aphids, induced the strongest changes in plant volatile emission. The caterpillars’ parasitoid C. glomerata did not exhibit preference for plants exposed to caterpillars only vs. plants exposed to caterpillars plus aphids or plus bacteria. However, the composition of the pollinator community associated with flowers of B. nigra was affected by plant exposure to the attackers, but the total number of pollinators visiting the plants did not change upon attack. We conclude that, when B. nigra were exposed to single or dual attack on their inflorescences, the plants maintained interactions with natural enemies of the insect attackers and with pollinators. We discuss how chemical diversity may contribute to plant resilience upon attack.


Author(s):  
Pan Liao ◽  
Shaunak Ray ◽  
Benoît Boachon ◽  
Joseph H. Lynch ◽  
Arnav Deshpande ◽  
...  

3 Biotech ◽  
2020 ◽  
Vol 10 (7) ◽  
Author(s):  
Andrea Gutiérrez-Santa Ana ◽  
H. A. Carrillo-Cerda ◽  
J. Rodriguez-Campos ◽  
M. R. Kirchmayr ◽  
S. M. Contreras-Ramos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document