scholarly journals Impact of Biomaterials on Differentiation and Reprogramming Approaches for the Generation of Functional Cardiomyocytes

Cells ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 114 ◽  
Author(s):  
Camilla Paoletti ◽  
Carla Divieto ◽  
Valeria Chiono

The irreversible loss of functional cardiomyocytes (CMs) after myocardial infarction (MI) represents one major barrier to heart regeneration and functional recovery. The combination of different cell sources and different biomaterials have been investigated to generate CMs by differentiation or reprogramming approaches although at low efficiency. This critical review article discusses the role of biomaterial platforms integrating biochemical instructive cues as a tool for the effective generation of functional CMs. The report firstly introduces MI and the main cardiac regenerative medicine strategies under investigation. Then, it describes the main stem cell populations and indirect and direct reprogramming approaches for cardiac regenerative medicine. A third section discusses the main techniques for the characterization of stem cell differentiation and fibroblast reprogramming into CMs. Another section describes the main biomaterials investigated for stem cell differentiation and fibroblast reprogramming into CMs. Finally, a critical analysis of the scientific literature is presented for an efficient generation of functional CMs. The authors underline the need for biomimetic, reproducible and scalable biomaterial platforms and their integration with external physical stimuli in controlled culture microenvironments for the generation of functional CMs.

2015 ◽  
Vol 3 (16) ◽  
pp. 3150-3168 ◽  
Author(s):  
Sunil Kumar Boda ◽  
Greeshma Thrivikraman ◽  
Bikramjit Basu

Substrate magnetization as a tool for modulating the osteogenesis of human mesenchymal stem cells for bone tissue engineering applications.


Epigenomes ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 5 ◽  
Author(s):  
Lior Lasman ◽  
Jacob H Hanna ◽  
Noa Novershtern

The rising field of RNA modifications is stimulating massive research nowadays. m6A, the most abundant mRNA modification is highly conserved during evolution. Through the last decade, the essential components of this dynamic mRNA modification machinery were found and classified into writer, eraser and reader proteins. m6A modification is now known to take part in diverse biological processes such as embryonic development, cell circadian rhythms and cancer stem cell proliferation. In addition, there is already firm evidence for the importance of m6A modification in stem cell differentiation and gametogenesis, both in males and females. This review attempts to summarize the important results of recent years studying the mechanism underlying stem cell differentiation and gametogenesis processes.


Sign in / Sign up

Export Citation Format

Share Document