scholarly journals Human Peripheral Blood-Derived Endothelial Colony-Forming Cells Are Highly Similar to Mature Vascular Endothelial Cells yet Demonstrate a Transitional Transcriptomic Signature

Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 876 ◽  
Author(s):  
Anton G. Kutikhin ◽  
Alexey E. Tupikin ◽  
Vera G. Matveeva ◽  
Daria K. Shishkova ◽  
Larisa V. Antonova ◽  
...  

Endothelial colony-forming cells (ECFC) are currently considered as a promising cell population for the pre-endothelialization or pre-vascularization of tissue-engineered constructs, including small-diameter biodegradable vascular grafts. However, the extent of heterogeneity between ECFC and mature vascular endothelial cells (EC) is unclear. Here, we performed a transcriptome-wide study to compare gene expression profiles of ECFC, human coronary artery endothelial cells (HCAEC), and human umbilical vein endothelial cells (HUVEC). Characterization of the abovementioned cell populations was carried out by immunophenotyping, tube formation assay, and evaluation of proliferation capability while global gene expression profiling was conducted by means of RNA-seq. ECFC were similar to HUVEC in terms of immunophenotype (CD31+vWF+KDR+CD146+CD34-CD133-CD45-CD90-) and tube formation activity yet had expectedly higher proliferative potential. HCAEC and HUVEC were generally similar to ECFC with regards to their global gene expression profile; nevertheless, ECFC overexpressed specific markers of all endothelial lineages (NRP2, NOTCH4, LYVE1), in particular lymphatic EC (LYVE1), and had upregulated extracellular matrix and basement membrane genes (COL1A1, COL1A2, COL4A1, COL4A2). Proteomic profiling for endothelial lineage markers and angiogenic molecules generally confirmed RNA-seq results, indicating ECFC as an intermediate population between HCAEC and HUVEC. Therefore, gene expression profile and behavior of ECFC suggest their potential to be applied for a pre-endothelialization of bioartificial vascular grafts, whereas in terms of endothelial hierarchy they differ from HCAEC and HUVEC, having a transitional phenotype.

Author(s):  
Noriko M. Matsumoto ◽  
Masayo Aoki ◽  
Yuri Okubo ◽  
Kosuke Kuwahara ◽  
Shigeyoshi Eura ◽  
...  

2004 ◽  
Vol 10 (1-6) ◽  
pp. 19-27 ◽  
Author(s):  
Yong Woo Lee ◽  
Sung Yong Eum ◽  
Kuey Chu Chen ◽  
Bernhard Hennig ◽  
Michal Toborek

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 621
Author(s):  
Maria Grazia Muoio ◽  
Marianna Talia ◽  
Rosamaria Lappano ◽  
Andrew H. Sims ◽  
Veronica Vella ◽  
...  

Background: Breast cancer (BC) mortality is increased among obese and diabetic patients. Both obesity and diabetes are associated with dysregulation of both the IGF-1R and the RAGE (Receptor for Advanced Glycation End Products) pathways, which contribute to complications of these disorders. The alarmin S100A7, signaling through the receptor RAGE, prompts angiogenesis, inflammation, and BC progression. Methods: We performed bioinformatic analysis of BC gene expression datasets from published studies. We then used Estrogen Receptor (ER)-positive BC cells, CRISPR-mediated IGF-1R KO BC cells, and isogenic S100A7-transduced BC cells to investigate the role of IGF-1/IGF-1R in the regulation of S100A7 expression and tumor angiogenesis. To this aim, we also used gene silencing and pharmacological inhibitors, and we performed gene expression and promoter studies, western blotting analysis, ChIP and ELISA assays, endothelial cell proliferation and tube formation assay. Results: S100A7 expression correlates with worse prognostic outcomes in human BCs. In BC cells, the IGF-1/IGF-1R signaling engages STAT3 activation and its recruitment to the S100A7 promoter toward S100A7 increase. In human vascular endothelial cells, S100A7 activates RAGE signaling and prompts angiogenic effects. Conclusions: In ER-positive BCs the IGF-1 dependent activation of the S100A7/RAGE signaling in adjacent endothelial cells may serve as a previously unidentified angiocrine effector. Targeting S100A7 may pave the way for a better control of BC, particularly in conditions of unopposed activation of the IGF-1/IGF-1R axis.


2018 ◽  
Vol 124 (4) ◽  
pp. 370-384 ◽  
Author(s):  
Yinglu Guan ◽  
Xiang Li ◽  
Michihisa Umetani ◽  
Krishna M. Boini ◽  
Pin‐Lan Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document