scholarly journals Influence of Isovalent ‘W’ Substitutions on the Structure and Electrical Properties of La2Mo2O9 Electrolyte for Intermediate-Temperature Solid Oxide Fuel Cells

Ceramics ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 502-515
Author(s):  
Tanmoy Paul ◽  
Yoed Tsur

Lanthanum molybdenum oxide (La2Mo2O9, LAMOX)-based ion conductors have been used as potential electrolytes for solid oxide fuel cells. The parent compound La2Mo2O9 undergoes a structural phase transition from monoclinic (P21) to cubic (P213) at 580 °C, with an enhancement in oxide ion conductivity. The cubic phase is of interest because it is beneficial for oxide ion conduction. In search of alternative candidates with a similar structure that might have a stable cubic phase at lower temperatures, we have studied the variations of the crystal structure and ionic conductivity for 25, 50, 62.5 and 75 mol% W substitutions at the Mo site using high-temperature X-ray diffraction, dilatometry, and impedance spectroscopy. Highly dense ceramic samples have been synthesized by solid-state reaction in a two-step sintering process. Low-angle X-ray diffraction and Rietveld refinement confirm the stabilization of the cubic phase for all compounds in the entire temperature range considered. The substitutions of W at the Mo site produce a decrement in the lattice parameter. The thermal expansion coefficients in the high-temperature range of the W-substituted ceramics, as determined by dilatometry, are much higher than that of the unmodified sample. The impedance spectra have been modeled using a modified genetic algorithm within 300–600 °C. A distribution function of the relaxation times is obtained, and the contributions of ohmic drop, grains and grain boundaries to the conductivity have been identified. Overall, our investigation provides information about cationic substitution and insights into the understanding of oxide ion conductivity in LAMOX-based compounds for developing solid oxide fuel cells.

2013 ◽  
Vol 207 ◽  
pp. 55-60 ◽  
Author(s):  
Marita Kerstan ◽  
Christian Thieme ◽  
Matthias Grosch ◽  
Matthias Müller ◽  
Christian Rüssel

1995 ◽  
Vol 393 ◽  
Author(s):  
Scott Meilicke ◽  
Sossina Haile

ABSTRACTRare-earth, yttrium, and calcium doped zirconates are the materials of choice for electrolytes in solid oxide fuel cells. The dopant in these materials serves not only to stabilized the cubic phase of zirconia, but also to introduce anion defects that presumably increase the ionic conductivity. In order to understand the relationships between anion defect distribution, thermal history and ionic conductivity, the structural properties of gadolinium zirconate, Gd2Zr207, have been examined via high-temperature x-ray powder diffraction. Gadolinium zirconate is an ideal material for such a structure-property-processing study: it shows ordering of defects at low temperatures, taking on a pyrochlore structure, and disordering at elevated temperature, taking on a defect fluorite structure. Diffraction experiments, performed as functions of time and temperature, confirmed the transition temperature to lie between 1500 and 1550 °C. They also revealed that the transformation takes place most rapidly just below the transition temperature, indicating that the ordering process is kinetically constrained at low temperatures. Moreover, x-ray data collected at room temperature from quenched samples were found to be as useful, if not more so, than those collected in situ at high temperature. The latter are affected by thermal scattering, severely compromising data quality.


2006 ◽  
Vol 408-412 ◽  
pp. 507-511 ◽  
Author(s):  
Tatsumi Ishihara ◽  
Masaki Ando ◽  
Makiko Enoki ◽  
Yusaku Takita

2014 ◽  
Vol 7 (5) ◽  
pp. 1680-1684 ◽  
Author(s):  
Tao Wei ◽  
Preetam Singh ◽  
Yunhui Gong ◽  
John B. Goodenough ◽  
Yunhui Huang ◽  
...  

A new solid oxide-ion conductor Sr3−3xNa3xSi3O9−1.5x (x = 0.45) exhibits the highest oxide-ion conductivity with the lowest activation energy among all the known chemically stable oxide-ion conductors.


Sign in / Sign up

Export Citation Format

Share Document