scholarly journals Fluid-Structure Interaction in Coronary Stents: A Discrete Multiphysics Approach

2021 ◽  
Vol 5 (3) ◽  
pp. 60
Author(s):  
Adamu Musa Mohammed ◽  
Mostapha Ariane ◽  
Alessio Alexiadis

Stenting is a common method for treating atherosclerosis. A metal or polymer stent is deployed to open the stenosed artery or vein. After the stent is deployed, the blood flow dynamics influence the mechanics by compressing and expanding the structure. If the stent does not respond properly to the resulting stress, vascular wall injury or re-stenosis can occur. In this work, a Discrete Multiphysics modelling approach is used to study the mechanical deformation of the coronary stent and its relationship with the blood flow dynamics. The major parameters responsible for deforming the stent are sorted in terms of dimensionless numbers and a relationship between the elastic forces in the stent and pressure forces in the fluid is established. The blood flow and the stiffness of the stent material contribute significantly to the stent deformation and affect its rate of deformation. The stress distribution in the stent is not uniform with the higher stresses occurring at the nodes of the structure. From the relationship (correlation) between the elastic force and the pressure force, depending on the type of material used for the stent, the model can be used to predict whether the stent is at risk of fracture or not after deployment.

Author(s):  
Adamu Musa Mohammed ◽  
Mostapha Ariane ◽  
Alessio Alexiadis

Stenting is a common method for treating atherosclerosis. A metal or polymer stent is deployed to open the stenosed artery or vein. After the stent is deployed, the blood flow dynamics influence the mechanics by compressing and expanding the structure. If the stent does not respond properly to the resulting stress, vascular wall injury or re-stenosis can occur. In this work, Discrete Multiphysics is used to study the mechanical deformation of the coronary stent and its relationship with the blood flow dynamics. The major parameters responsible for deforming the stent are sort in terms of dimensionless numbers and a relationship between the elastic forces in the stent and pressure forces in the fluid is established. The blood flow and the stiffness of the stent material contribute significantly to the stent deformation and affect the rate of deformation. The stress distribution in the stent is not uniform with the higher stresses occurring at the nodes of the structure.


2011 ◽  
Vol 300 (2) ◽  
pp. F319-F329 ◽  
Author(s):  
Niels-Henrik Holstein-Rathlou ◽  
Olga V. Sosnovtseva ◽  
Alexey N. Pavlov ◽  
William A. Cupples ◽  
Charlotte Mehlin Sorensen ◽  
...  

Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50–100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic techniques for extracting the desired data and for examining them for evidence of nephron synchronization. Synchronized TGF oscillations were detected in pairs or triplets of nephrons. The amplitude and the frequency of the oscillations changed with time, as did the patterns of synchronization. Synchronization may take place among nephrons not immediately adjacent on the surface of the kidney.


2006 ◽  
Vol 38 (10) ◽  
pp. 1811-1818 ◽  
Author(s):  
MICHAEL E. TSCHAKOVSKY ◽  
NATASHA R. SAUNDERS ◽  
KATHERINE A. WEBB ◽  
DENIS E. O'DONNELL

1990 ◽  
Vol 8 (2) ◽  
pp. 167-172 ◽  
Author(s):  
Q. Guo ◽  
L. Friloux ◽  
O. Nalcioglu

Sign in / Sign up

Export Citation Format

Share Document