scholarly journals Degradation of Polypropylene and Jute Fiber-Reinforced Composites Exposed to Natural and Accelerated Aging: Mechanical Properties and Wettability

Chemistry ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1392-1400
Author(s):  
Paula Bertolino Sanvezzo ◽  
Fernanda Pereira de Castro Negreiros ◽  
Marcia Cristina Branciforti

Population growth and the way resources are being exploited are directly affecting the environment. The natural fiber market, for example, is worth billions of dollars and a huge amount of the fibers becomes waste. This considerable amount of waste motivates the study of the fibers as a reinforcement in polymeric matrix, which benefits both the environmental sustainability and technical-commercial development of new materials with good properties and reduced cost. In this study, jute fiber-reinforced composites previously manufactured from an industrial waste (W), polypropylene, compatibilizer, and nano-calcium carbonate (N), were exposed to natural and accelerated aging. The composites were tested by infrared spectroscopy, contact angle (CA) measurement, and tensile test. Infrared analysis showed greater oxidative degradation after accelerated aging. All CA values continued above 90° after natural aging. Among all compositions, the ones with the presence of N had the highest CA values, showing that N acted as a waterproofing agent. After accelerated aging, a significant decrease in all CA values was observed. The composites did not show significant variation in the elastic modulus after either aging. Deformation at break decreased significantly for compositions with no jute fiber in both aging programs. No remarkable reduction was observed in the compositions with jute fibers.

Author(s):  
Engr. Ojukwu Martins chubuike ◽  
Chukwunyelu Christian Ebele ◽  
Engr. Ilo Fidelis Ifeanyi ◽  
Ekwueme Solomon Okwuchukwu ◽  
Orizu Eziafa Festus

2016 ◽  
Vol 725 ◽  
pp. 88-93 ◽  
Author(s):  
Pushparaja ◽  
G. Balaganesan ◽  
Ramachandran Velmurugan

Biodegradable composites are highly encouraged to replace the traditional composites to promote the frangibility and environmental sustainability. In this paper, impact response of natural fiber reinforced composites is carried out by using drop mass set-up. Sisal and coir fibers are reinforced in epoxy matrix and the laminates are made by compression moulding process. Experiments are conducted to predict energy absorption and peak contact force during impact of 6 kg mass. Results are analyzed to find suitability of natural fiber reinforced composites in order to derive the suitable materials for frangibility application.


2019 ◽  
Vol 12 (1) ◽  
pp. 4-76 ◽  
Author(s):  
Krittirash Yorseng ◽  
Mavinkere R. Sanjay ◽  
Jiratti Tengsuthiwat ◽  
Harikrishnan Pulikkalparambil ◽  
Jyotishkumar Parameswaranpillai ◽  
...  

Background: This era has seen outstanding achievements in materials science through the advances in natural fiber-based composites. The new environmentally friendly and sustainability concerns have imposed the chemists, biologists, researchers, engineers, and scientists to discover the engineering and structural applications of natural fiber reinforced composites. Objective: To present a comprehensive evaluation of information from 2000 to 2018 in United States patents in the field of natural fibers and their composite materials. Methods: The patent data have been taken from the external links of US patents such as IFI CLAIMS Patent Services, USPTO, USPTO Assignment, Espacenet, Global Dossier, and Discuss. Results: The present world scenario demands the usage of natural fibers from agricultural and forest byproducts as a reinforcement material for fiber reinforced composites. Natural fibers can be easily extracted from plants and animals. Recently natural fiber in nanoscale is preferred over micro and macro scale fibers due to its superior thermo-mechanical properties. However, the choice of macro, micro, and nanofibers depends on their applications. Conclusion: This document presents a comprehensive evaluation of information from 2000 to 2018 in United States patents in the field of natural fibers and their composite materials.


Author(s):  
Haasith Chittimenu ◽  
Monesh Pasupureddy ◽  
Chandrasekar Muthukumar ◽  
Senthilkumar Krishnasamy ◽  
Senthil Muthu Kumar Thiagamani ◽  
...  

2021 ◽  
Vol 7 (2) ◽  
pp. 58
Author(s):  
Celal Çakıroğlu ◽  
Gebrail Bekdaş

In the recent years natural fiber reinforced composites are increasingly receiving attention from the researchers and engineers due to their mechanical properties comparable to the conventional synthetic fibers and due to their ease of preparation, low cost and density, eco-friendliness and bio-degradability. Natural fibers such as kenaf or flux are being considered as a viable replacement for glass, aramid or carbon. Extensive experimental studies have been carried out to determine the mechanical behavior of different natural fiber types such as the elastic modulus, tensile strength, flexural strength and the Poisson’s ratio. This paper presents a review of the various experimental studies in the field of fiber reinforced composites while summarizing the research outcome about the elastic properties of the major types of natural fiber reinforced composites. Furthermore, the performance of a kenaf reinforced composite plate is demonstrated using finite element analysis and results are compared to a glass fiber reinforced laminated composite plate.


2015 ◽  
Vol 50 (9) ◽  
pp. 1145-1160 ◽  
Author(s):  
Kabiru Mustapha ◽  
Ebenezer Annan ◽  
Salifu T Azeko ◽  
Martiale G Zebaze Kana ◽  
Winston O Soboyejo

Sign in / Sign up

Export Citation Format

Share Document