scholarly journals Strategies for Improving the Sensing Performance of Semiconductor Gas Sensors for High-Performance Formaldehyde Detection: A Review

Chemosensors ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 179
Author(s):  
Zhenyu Yuan ◽  
Chang Yang ◽  
Fanli Meng

Formaldehyde is a poisonous and harmful gas, which is ubiquitous in our daily life. Long-term exposure to formaldehyde harms human body functions; therefore, it is urgent to fabricate sensors for the real-time monitoring of formaldehyde concentrations. Metal oxide semiconductor (MOS) gas sensors is favored by researchers as a result of their low cost, simple operation and portability. In this paper, the mechanism of formaldehyde detection by gas sensors is introduced, and then the ways of ameliorating the response of gas sensors for formaldehyde detection in recent years are summarized. These methods include the control of the microstructure and morphology of sensing materials, the doping modification of matrix materials, the development of new semiconductor sensing materials, the outfield control strategy and the construction of the filter membrane. These five methods will provide a good prerequisite for the preparation of better performing formaldehyde gas sensors.

MRS Bulletin ◽  
1996 ◽  
Vol 21 (4) ◽  
pp. 38-44 ◽  
Author(s):  
F.K. LeGoues

Recently much interest has been devoted to Si-based heteroepitaxy, and in particular, to the SiGe/Si system. This is mostly for economical reasons: Si-based technology is much more advanced, is widely available, and is cheaper than GaAs-based technology. SiGe opens the door to the exciting (and lucrative) area of Si-based high-performance devices, although optical applications are still limited to GaAs-based technology. Strained SiGe layers form the base of heterojunction bipolar transistors (HBTs), which are currently used in commercial high-speed analogue applications. They promise to be low-cost compared to their GaAs counterparts and give comparable performance in the 2-20-GHz regime. More recently we have started to investigate the use of relaxed SiGe layers, which opens the door to a wider range of application and to the use of SiGe in complementary metal oxide semiconductor (CMOS) devices, which comprise strained Si and SiGe layers. Some recent successes include record-breaking low-temperature electron mobility in modulation-doped layers where the mobility was found to be up to 50 times better than standard Si-based metal-oxide-semiconductor field-effect transistors (MOSFETs). Even more recently, SiGe-basedp-type MOSFETS were built with oscillation frequency of up to 50 GHz, which is a new record, in anyp-type material for the same design rule.


2015 ◽  
Vol 212 (6) ◽  
pp. 1289-1298 ◽  
Author(s):  
Johannes Warmer ◽  
Patrick Wagner ◽  
Michael J. Schöning ◽  
Peter Kaul

RSC Advances ◽  
2020 ◽  
Vol 10 (47) ◽  
pp. 28464-28477
Author(s):  
Paula Tarttelin Hernández ◽  
Stephen M. V. Hailes ◽  
Ivan P. Parkin

Metal oxide semiconductor gas sensors based on SnO2 and Cr2O3 were modified with zeolites H-ZSM-5, Na-A and H–Y to create a gas sensor array to detect cocaine by-product, methyl benzoate. SVMs were later used with a 4 sensor array to classify 9 gases of interest.


Sign in / Sign up

Export Citation Format

Share Document