scholarly journals Development of a New Screen-Printed Transducer for the Electrochemical Detection of Thiram

Chemosensors ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 303
Author(s):  
David Ibáñez ◽  
Daniel Izquierdo-Bote ◽  
María Begoña González-García ◽  
David Hernández-Santos ◽  
Pablo Fanjul-Bolado

A new transducer based on a screen-printed carbon electrode has been developed for the quantification of thiram. Detection of this fungicide is based on the performance of two enzymes: (1) aldehyde dehydrogenase catalyzes the aldehyde oxidation using NAD+ as a cofactor and simultaneously, (2) diaphorase reoxidizes the NADH formed in the first enzymatic process due to the presence of hexacyanoferrate(III) which is reduced to hexacyanoferrate(II). Taking into account that aldehyde dehydrogenase is inhibited by thiram, the current decreases with pesticide concentration and thiram can be electrochemically quantified below legal limits. The transducer proposed in this work involves the modification of the carbon WE with the co-factors (NAD+ and hexacyanoferrate(III)) required in the enzymatic system. The new device employed in this work allows the detection of 0.09 ppm thiram, a concentration below legal limits (Maximum Residue Limits 0.1–10 ppm).

2012 ◽  
Vol 571 ◽  
pp. 56-59
Author(s):  
Yu Fang Sha ◽  
Mei Zhao ◽  
Ming Quan Yang ◽  
Hai Xin Bai ◽  
Man Zhao

Biological multilayer films of redox polymer and horseradish peroxidase (HRP) were successfully assembled on a screen-printed carbon electrode using layer-by-layer (LBL) assembled method based on the electrostatic interaction. The screen-printed carbon electrode surface was modified by the positively charged redox polymer, and the negatively charged HRP by LBL method.


2021 ◽  
pp. 130574
Author(s):  
P.E. Resmi ◽  
Jeethu Raveendran ◽  
P.V. Suneesh ◽  
T. Ramanchandran ◽  
Bipin G Nair ◽  
...  

2014 ◽  
Vol 447 ◽  
pp. 162-168 ◽  
Author(s):  
Nicolaj Cruys-Bagger ◽  
Hirosuke Tatsumi ◽  
Kim Borch ◽  
Peter Westh

Talanta ◽  
2012 ◽  
Vol 88 ◽  
pp. 432-438 ◽  
Author(s):  
Julien Biscay ◽  
Estefanía Costa Rama ◽  
María Begoña González García ◽  
A. Julio Reviejo ◽  
José Manuel Pingarrón Carrazón ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4324 ◽  
Author(s):  
Nurul Talib ◽  
Faridah Salam ◽  
Yusran Sulaiman

Clenbuterol (CLB) is an antibiotic and illegal growth promoter drug that has a long half-life and easily remains as residue and contaminates the animal-based food product that leads to various health problems. In this work, electrochemical immunosensor based on poly(3,4-ethylenedioxythiophene)/graphene oxide (PEDOT/GO) modified screen-printed carbon electrode (SPCE) for CLB detection was developed for antibiotic monitoring in a food product. The modification of SPCE with PEDOT/GO as a sensor platform was performed through electropolymerization, while the electrochemical assay was accomplished while using direct competitive format in which the free CLB and clenbuterol-horseradish peroxidase (CLB-HRP) in the solution will compete to form binding with the polyclonal anti-clenbuterol antibody (Ab) immobilized onto the modified electrode surface. A linear standard CLB calibration curve with R2 = 0.9619 and low limit of detection (0.196 ng mL−1) was reported. Analysis of milk samples indicated that this immunosensor was able to detect CLB in real samples and the results that were obtained were comparable with enzyme-linked immunosorbent assays (ELISA).


Sign in / Sign up

Export Citation Format

Share Document