scholarly journals Differential Diagnosis of Pediatric Multiple Sclerosis

Children ◽  
2019 ◽  
Vol 6 (6) ◽  
pp. 75 ◽  
Author(s):  
Maria Milagros Galardi ◽  
Cristina Gaudioso ◽  
Saumel Ahmadi ◽  
Emily Evans ◽  
Laura Gilbert ◽  
...  

The differential diagnosis of pediatric multiple sclerosis (MS) can be broad and pose diagnostic challenges, particularly at initial presentation. Among demyelinating entities, neuromyelitis optica spectrum disorders (NMOSD), myelin oligodendrocyte glycoprotein antibodies (MOG-ab) associated disorders, and acute disseminated encephalomyelitis (ADEM) are now well-known as unique disease processes and yet continue to overlap with MS in regards to clinical presentation and imaging. In non-inflammatory entities, such as metabolic disorders and leukodystrophies, an erroneous diagnosis of MS can be made even while applying appropriate diagnostic criteria. Knowing the epidemiology, typical clinical presentation, diagnostic criteria, and ancillary test results in each disease, can aid in making the correct diagnosis by contrasting these features with those of pediatric MS. Determining the correct diagnosis early, allows for efficient and effective treatment as well as appropriate prognostication.

2017 ◽  
Vol 16 (03) ◽  
pp. 164-170
Author(s):  
Rachel Gottlieb-Smith ◽  
Amy Waldman

AbstractAcquired demyelinating syndromes (ADS) present with acute or subacute monofocal or polyfocal neurologic deficits localizing to the central nervous system. The clinical features of distinct ADS have been carefully characterized including optic neuritis, transverse myelitis, and acute disseminated encephalomyelitis. These disorders may all be monophasic disorders. Alternatively, optic neuritis, partial transverse myelitis, and acute disseminated encephalomyelitis may be first presentations of a relapsing or polyphasic neuroinflammatory disorder, such as multiple sclerosis or neuromyelitis optica. The clinical features of these disorders and the differential diagnosis are discussed in this article.


2014 ◽  
Author(s):  
J William Lindsey

Multiple sclerosis (MS) is a relatively common cause of neurologic symptoms and disability in young adults. The distinguishing pathologic features of MS are loss of myelin and inflammation in the central nervous system (CNS). The myelin sheath is essential for rapid conduction of nerve signals along large-diameter axons. Oligodendrocytes produce and maintain myelin in the CNS, and Schwann cells produce and maintain myelin in the peripheral nerves. In addition to MS, there are a number of related disorders causing demyelination, inflammation, or both in the CNS. This chapter discusses MS and related disorders, including neuromyelitis optica, optic neuritis, acute disseminated encephalomyelitis, transverse myelitis, Behçet syndrome, neurosarcoidosis, inherited demyelinating diseases (leukodystrophies, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy [CADASIL]), and virus-induced demyelination (progressive multifocal leukoencephalopathy, subacute sclerosing panencephalitis). The section on MS covers epidemiology, etiology/genetics, pathogenesis, diagnosis, differential diagnosis, management, and prognosis. Figures include organization of the microenvironment of larger-diameter axons, typical magnetic resonance imaging findings in MS and neuromyelitis optica, postgadolinium images of the cervical spine in MS, and an approach to treatment of relapsing-remitting MS. Tables list MS and related disorders, distribution of neurologic deficits at the onset of MS, differential diagnosis of MS, disease-modifying therapies for relapsing-remitting MS, and selected leukodystrophies, as well as diagnostic criteria and selected symptomatic therapies for MS. This review contains 3 highly rendered figures, 7 tables, and 82 references.


2015 ◽  
Author(s):  
J William Lindsey

Multiple sclerosis (MS) is a relatively common cause of neurologic symptoms and disability in young adults. The distinguishing pathologic features of MS are loss of myelin and inflammation in the central nervous system (CNS). The myelin sheath is essential for rapid conduction of nerve signals along large-diameter axons. Oligodendrocytes produce and maintain myelin in the CNS, and Schwann cells produce and maintain myelin in the peripheral nerves. In addition to MS, there are a number of related disorders causing demyelination, inflammation, or both in the CNS. This chapter discusses MS and related disorders, including neuromyelitis optica, optic neuritis, acute disseminated encephalomyelitis, transverse myelitis, Behçet syndrome, neurosarcoidosis, inherited demyelinating diseases (leukodystrophies, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy [CADASIL]), and virus-induced demyelination (progressive multifocal leukoencephalopathy, subacute sclerosing panencephalitis). The section on MS covers epidemiology, etiology/genetics, pathogenesis, diagnosis, differential diagnosis, management, and prognosis. Figures include organization of the microenvironment of larger-diameter axons, typical magnetic resonance imaging findings in MS and neuromyelitis optica, postgadolinium images of the cervical spine in MS, and an approach to treatment of relapsing-remitting MS. Tables list MS and related disorders, distribution of neurologic deficits at the onset of MS, differential diagnosis of MS, disease-modifying therapies for relapsing-remitting MS, and selected leukodystrophies, as well as diagnostic criteria and selected symptomatic therapies for MS.   This chapter contains 3 highly rendered figures, 7 tables, 82 references, 1 teaching slide set, and 5 MCQs.


2013 ◽  
Vol 19 (10) ◽  
pp. 1261-1267 ◽  
Author(s):  
Lauren B Krupp ◽  
Marc Tardieu ◽  
Maria Pia Amato ◽  
Brenda Banwell ◽  
Tanuja Chitnis ◽  
...  

Background: There has been tremendous growth in research in pediatric multiple sclerosis (MS) and immune mediated central nervous system demyelinating disorders since operational definitions for these conditions were first proposed in 2007. Further, the International Pediatric Multiple Sclerosis Study Group (IPMSSG), which proposed the criteria, has expanded substantially in membership and in its international scope. Objective: The purpose of this review is to revise the 2007 definitions in order to incorporate advances in delineating the clinical and neuroradiologic features of these disorders. Methods: Through a consensus process, in which input was sought from the 150 members of the Study Group, criteria were drafted, revised and finalized. Final approval was sought through a web survey. Results: Revised criteria are proposed for pediatric acute disseminated encephalomyelitis, pediatric clinically isolated syndrome, pediatric neuromyelitis optica and pediatric MS. These criteria were approved by 93% or more of the 56 Study Group members who responded to the final survey. Conclusions: These definitions are proposed for clinical and research purposes. Their utility will depend on the outcomes of their application in prospective research.


2017 ◽  
Vol 10 (7) ◽  
pp. 265-289 ◽  
Author(s):  
Sung-Min Kim ◽  
Seong-Joon Kim ◽  
Haeng Jin Lee ◽  
Hiroshi Kuroda ◽  
Jacqueline Palace ◽  
...  

Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory disorder of the central nervous system (CNS) mostly manifesting as optic neuritis and/or myelitis, which are frequently recurrent/bilateral or longitudinally extensive, respectively. As the autoantibody to aquaporin-4 (AQP4-Ab) can mediate the pathogenesis of NMOSD, testing for the AQP4-Ab in serum of patients can play a crucial role in diagnosing NMOSD. Nevertheless, the differential diagnosis of NMOSD in clinical practice is often challenging despite the phenotypical and serological characteristics of the disease because: (1) diverse diseases with autoimmune, vascular, infectious, or neoplastic etiologies can mimic these phenotypes of NMOSD; (2) patients with NMOSD may only have limited clinical manifestations, especially in their early disease stages; (3) test results for AQP4-Ab can be affected by several factors such as assay methods, serologic status, disease stages, or types of treatment; (4) some patients with NMOSD do not have AQP4-Ab; and (5) test results for the AQP4-Ab may not be readily available for the acute management of patients. Despite some similarity in their phenotypes, these NMOSD and NMOSD-mimics are distinct from each other in their pathogenesis, prognosis, and most importantly treatment. Understanding the detailed clinical, serological, radiological, and prognostic differences of these diseases will improve the proper management as well as diagnosis of patients.


2017 ◽  
Vol 74 (3) ◽  
pp. 287-293 ◽  
Author(s):  
Ana Podgorac ◽  
Jasna Zidverc-Trajkovic ◽  
Zagorka Jovanovic ◽  
Aleksandar Ristic ◽  
Aleksandra Radojicic ◽  
...  

Introduction. Tolosa?Hunt syndrome (THS) is a rare entity, characterized by unilateral orbital pain associated with paresis of one or more of the oculomotor cranial nerves and caused by a granulomatous inflammation in the cavernous sinus, superior orbital fissure or orbit. The low prevalence of THS with a broad spectrum of other disorders that could cause painful ophtalmoplegia resulted in a stricter diagnostic criteria of THS in the latest edition of the International Classification of Headache Disorders. Current criteria require demonstration of granuloma by magnetic resonance imaging or biopsy. The diagnosis could be difficult and the initiation of treatment delayed due to a high variablity of clinical presentation of TSH. Reducing the number of patients that, based on clinical presentation, could be classified as having THS, but do not fullfil all diagnostic criteria further complicates establishing of correct diagnosis. Case report. Hereby we presented eight patients diagnosed with and treated for THS. Inspite the exclusion of other causes of painful ophtalmoplegia, granuloma could not be demonstrated in a half of patients. Clinical presentation of THS in patients with and without shown granuloma, did not significantly differ concerning headache characteristics (localization, intensity, quality, duration preceding cranial nerve palsy, response to steroids), the affected cranial nerve, disease course and response to the treatment, as well as types of diagnostic procedures that were performed in ruling out other diseases from the extensive differential diagnosis of painful ophthalmoplegia. Conclusion. There is no significant difference between the THS patients with and without demonstrated granuloma.


2020 ◽  
Vol 25 (4) ◽  
pp. 45-50
Author(s):  
O. N. Voskresenskaya ◽  
T. E. Shmidt ◽  
O. A. Shavlovskaya ◽  
N. D. Kodjebash

A medical case of an acute demyelinating process in cerebrum caused by taking levamisole is presented. The issues of pathogenesis and differential diagnosis of levamisole-induced leukoencephalopathy with acute disseminated encephalomyelitis, multiple sclerosis, progressive multifocal leukoencephalopathy, and cerebral lymphoma are discussed.


2015 ◽  
Author(s):  
J William Lindsey

Multiple sclerosis (MS) is a relatively common cause of neurologic symptoms and disability in young adults. The distinguishing pathologic features of MS are loss of myelin and inflammation in the central nervous system (CNS). The myelin sheath is essential for rapid conduction of nerve signals along large-diameter axons. Oligodendrocytes produce and maintain myelin in the CNS, and Schwann cells produce and maintain myelin in the peripheral nerves. In addition to MS, there are a number of related disorders causing demyelination, inflammation, or both in the CNS. This chapter discusses MS and related disorders, including neuromyelitis optica, optic neuritis, acute disseminated encephalomyelitis, transverse myelitis, Behçet syndrome, neurosarcoidosis, inherited demyelinating diseases (leukodystrophies, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy [CADASIL]), and virus-induced demyelination (progressive multifocal leukoencephalopathy, subacute sclerosing panencephalitis). The section on MS covers epidemiology, etiology/genetics, pathogenesis, diagnosis, differential diagnosis, management, and prognosis. Figures include organization of the microenvironment of larger-diameter axons, typical magnetic resonance imaging findings in MS and neuromyelitis optica, postgadolinium images of the cervical spine in MS, and an approach to treatment of relapsing-remitting MS. Tables list MS and related disorders, distribution of neurologic deficits at the onset of MS, differential diagnosis of MS, disease-modifying therapies for relapsing-remitting MS, and selected leukodystrophies, as well as diagnostic criteria and selected symptomatic therapies for MS.   This chapter contains 3 highly rendered figures, 7 tables, 82 references, 1 teaching slide set, and 5 MCQs.


Sign in / Sign up

Export Citation Format

Share Document