scholarly journals Dexpanthenol Promotes Cell Growth by Preventing Cell Senescence and Apoptosis in Cultured Human Hair Follicle Cells

2021 ◽  
Vol 43 (3) ◽  
pp. 1361-1373
Author(s):  
Jae Young Shin ◽  
Jaeyoon Kim ◽  
Yun-Ho Choi ◽  
Nae-Gyu Kang ◽  
Sanghwa Lee

Dexpanthenol (D-panthenol) is a precursor of vitamin B5 (pantothenic acid) and is widely used for dietary supplements and topical applications. D-panthenol has long been used in hair care products for the purpose of anti-hair loss, its effects and the underlying mechanisms, however, were barely reported. In this study, the effects of D-panthenol on human hair follicle cells, including dermal papilla cells (hDPCs) and outer root sheath cells (hORSCs), were investigated. D-panthenol enhanced the cell viability, increasing the cellular proliferation marker Ki67 in cultured hDPCs. The markers for apoptosis (Caspase3/9) and cell senescence (p21/p16), reported to be expressed in aged or resting phase follicles, were significantly reduced by D-panthenol. Anagen-inducing factors (ALP; β-catenin; versican), which trigger or elongate the anagen phase, were stimulated by D-panthenol. On the other hand, D-panthenol reduced TGF-β1 expressions in both mRNA and protein levels. The expression of VEGF, which is important for peripheral blood vessel activation; was up-regulated by D-panthenol treatment. In cultured hORSCs, cell proliferation and viability were enhanced, while the mRNA expression of cell senescence markers (p21/p16) was significantly down-regulated. The expressions of both VEGF and its receptor (VEGFR) were up-regulated by D-panthenol. In conclusion, our data suggest that the hair growth stimulating activity of D-panthenol was exerted by increasing the cell viability, suppressing the apoptotic markers, and elongating the anagen phase in hair follicles.

1988 ◽  
Vol 50 (2) ◽  
pp. 271-276 ◽  
Author(s):  
Ryuichiro KUWANA ◽  
Seiji ARASE ◽  
Yasushi SADAMOTO ◽  
Hideki NAKANISHI ◽  
Katsuyuki TAKEDA

1988 ◽  
Vol 50 (1) ◽  
pp. 97-102 ◽  
Author(s):  
Ryuichiro KUWANA ◽  
Seiji ARASE ◽  
Yasushi SADAMOTO ◽  
Hideki NAKANISHI ◽  
Tetsuhiko SAKAKI ◽  
...  

1989 ◽  
Vol 51 (1) ◽  
pp. 66-70 ◽  
Author(s):  
Ryuichiro KUWANA ◽  
Seiji ARASE ◽  
Yasushi SADAMOTO ◽  
Kimitaka KANNO ◽  
Hideki NAKANISHI ◽  
...  

Author(s):  
Megan A. Palmer ◽  
Eleanor Smart ◽  
Iain S. Haslam

AbstractCholesterol has long been suspected of influencing hair biology, with dysregulated homeostasis implicated in several disorders of hair growth and cycling. Cholesterol transport proteins play a vital role in the control of cellular cholesterol levels and compartmentalisation. This research aimed to determine the cellular localisation, transport capability and regulatory control of cholesterol transport proteins across the hair cycle. Immunofluorescence microscopy in human hair follicle sections revealed differential expression of ATP-binding cassette (ABC) transporters across the hair cycle. Cholesterol transporter expression (ABCA1, ABCG1, ABCA5 and SCARB1) reduced as hair follicles transitioned from growth to regression. Staining for free cholesterol (filipin) revealed prominent cholesterol striations within the basement membrane of the hair bulb. Liver X receptor agonism demonstrated active regulation of ABCA1 and ABCG1, but not ABCA5 or SCARB1 in human hair follicles and primary keratinocytes. These results demonstrate the capacity of human hair follicles for cholesterol transport and trafficking. Future studies examining the role of cholesterol transport across the hair cycle may shed light on the role of lipid homeostasis in human hair disorders.


Sign in / Sign up

Export Citation Format

Share Document