outer root sheath
Recently Published Documents


TOTAL DOCUMENTS

248
(FIVE YEARS 52)

H-INDEX

35
(FIVE YEARS 2)

Author(s):  
Charlie Colin-Pierre ◽  
Nicolas Berthélémy ◽  
Nicolas Belloy ◽  
Louis Danoux ◽  
Vincent Bardey ◽  
...  

The hair renewal involves changes in the morphology of the hair follicle and its micro-vascularization. In alopecia, the hair cycle is accelerated, resulting in the formation of thinner and shorter hair. In addition, alopecia is associated with a decrease in the micro-vascularization of the hair follicles. In this study, the role of glypicans (GPCs) was analyzed in the regulation of the angiogenesis of human dermal microvascular endothelial cells (HDMEC). The analysis of glypican gene expression showed that GPC1 is the major glypican expressed by human keratinocytes of outer root sheath (KORS), human hair follicle dermal papilla cells (HHFDPC) and HDMEC. KORS were demonstrated to secrete VEGF and HGF. The HDMEC pseudotube formation was induced by KORS conditioned media (KORSCM). It was totally abrogated after GPC1 siRNA transfection of HDMEC. Moreover, when cleaved by phospholipase C (PLC), GPC1 promotes the proliferation of HDMEC. Finally, GPC1 was shown to interact directly with VEGFR2 or c-Met to regulate angiogenesis induced by the activation of these receptors. Altogether, these results showed that GPC1 is a key regulator of microvascular endothelial cell angiogenesis induced by VEGF and HGF secreted by KORS. Thus, GPC1 might constitute an interesting target to tackle alopecia in dermatology research.


2021 ◽  
Vol 22 (24) ◽  
pp. 13205
Author(s):  
Elijah J. Horesh ◽  
Jérémy Chéret ◽  
Ralf Paus

Ever since the discoveries that human hair follicles (HFs) display the functional peripheral equivalent of the hypothalamic-pituitary-adrenal axis, exhibit elements of the hypothalamic-pituitary-thyroid axis, and even generate melatonin and prolactin, human hair research has proven to be a treasure chest for the exploration of neurohormone functions. However, growth hormone (GH), one of the dominant neurohormones of human neuroendocrine physiology, remains to be fully explored in this context. This is interesting since it has long been appreciated clinically that excessive GH serum levels induce distinct human skin pathology. Acromegaly, or GH excess, is associated with hypertrichosis, excessive androgen-independent growth of body hair, and hirsutism in females, while dysfunctional GH receptor-mediated signaling (Laron syndrome) is associated with alopecia and prominent HF defects. The outer root sheath keratinocytes have recently been shown to express functional GH receptors. Furthermore, and contrary to its name, recombinant human GH is known to inhibit female human scalp HFs’ growth ex vivo, likely via stimulating the expression of the catagen-inducing growth factor, TGF-β2. These limited available data encourage one to systematically explore the largely uncharted role of GH in human HF biology to uncover nonclassical functions of this core neurohormone in human skin physiology.


2021 ◽  
Vol 37 (2) ◽  
pp. 97-100
Author(s):  
Hong Dae Kim ◽  
Min Kyu Park ◽  
Hyeon A Lee ◽  
Yong Bae Ji

Pilomatricoma(or calcifying epithelioma) is a not common benign solitary tumor originated from outer root sheath cell of hair follicle or hair follicle of sebaceous glands. The tumor usually presents as an asymptomatic, hard, superficial located, and skin colored to reddish blue cutaneous mass. Most of the tumors are less than 10mm in diameter and adherent to the skin. Recently, 48-year-old man presented with cheek mass. The tumor was 2.6cm sized and located at the subcutaneous layer of cheek on CT scan. The tumor was clearly removed via transoral approach with buccal incision leaving no wound on face. The mass was confirmed as pilomatricoma on pathologic examination. Herein, we report our experience with literature review.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katarzyna Figlak ◽  
Greg Williams ◽  
Marta Bertolini ◽  
Ralf Paus ◽  
Michael P. Philpott

AbstractHair follicles (HFs) are unique, multi-compartment, mini-organs that cycle through phases of active hair growth and pigmentation (anagen), apoptosis-driven regression (catagen) and relative quiescence (telogen). Anagen HFs have high demands for energy and biosynthesis precursors mainly fulfilled by aerobic glycolysis. Histochemistry reports the outer root sheath (ORS) contains high levels of glycogen. To investigate a functional role for glycogen in the HF we quantified glycogen by Periodic-Acid Schiff (PAS) histomorphometry and colorimetric quantitative assay showing ORS of anagen VI HFs contained high levels of glycogen that decreased in catagen. qPCR and immunofluorescence microscopy showed the ORS expressed all enzymes for glycogen synthesis and metabolism. Using human ORS keratinocytes (ORS-KC) and ex vivo human HF organ culture we showed active glycogen metabolism by nutrient starvation and use of a specific glycogen phosphorylase (PYGL) inhibitor. Glycogen in ORS-KC was significantly increased by incubation with lactate demonstrating a functional Cori cycle. Inhibition of PYGL significantly stimulated the ex vivo growth of HFs and delayed onset of catagen. This study defines translationally relevant and therapeutically targetable new features of HF metabolism showing that human scalp HFs operate an internal Cori cycle, synthesize glycogen in the presence of lactate and modulate their growth via PYGL activity.


2021 ◽  
Vol 43 (3) ◽  
pp. 1361-1373
Author(s):  
Jae Young Shin ◽  
Jaeyoon Kim ◽  
Yun-Ho Choi ◽  
Nae-Gyu Kang ◽  
Sanghwa Lee

Dexpanthenol (D-panthenol) is a precursor of vitamin B5 (pantothenic acid) and is widely used for dietary supplements and topical applications. D-panthenol has long been used in hair care products for the purpose of anti-hair loss, its effects and the underlying mechanisms, however, were barely reported. In this study, the effects of D-panthenol on human hair follicle cells, including dermal papilla cells (hDPCs) and outer root sheath cells (hORSCs), were investigated. D-panthenol enhanced the cell viability, increasing the cellular proliferation marker Ki67 in cultured hDPCs. The markers for apoptosis (Caspase3/9) and cell senescence (p21/p16), reported to be expressed in aged or resting phase follicles, were significantly reduced by D-panthenol. Anagen-inducing factors (ALP; β-catenin; versican), which trigger or elongate the anagen phase, were stimulated by D-panthenol. On the other hand, D-panthenol reduced TGF-β1 expressions in both mRNA and protein levels. The expression of VEGF, which is important for peripheral blood vessel activation; was up-regulated by D-panthenol treatment. In cultured hORSCs, cell proliferation and viability were enhanced, while the mRNA expression of cell senescence markers (p21/p16) was significantly down-regulated. The expressions of both VEGF and its receptor (VEGFR) were up-regulated by D-panthenol. In conclusion, our data suggest that the hair growth stimulating activity of D-panthenol was exerted by increasing the cell viability, suppressing the apoptotic markers, and elongating the anagen phase in hair follicles.


Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2798
Author(s):  
Yanyu He ◽  
Xiu Liu ◽  
Jie De ◽  
Saihong Kang ◽  
John S. Munday

This experiment compared secondary hair follicles (SFs) in Tibetan cashmere goats from two different steppes that were at different altitudes and had different temperatures. Twenty-four 2-year-old goats were studied. Twelve goats were from Rikaze in Tibet which is at an altitude of above 5000 m with an average temperature of 0 °C. The other 12 studied goats were from Huan County of Gansu Province which is around 2000 m above sea level with an average temperature of 9.2 °C. The structural features of SFs were assessed using light microscopy and transmission electron microscopy. The presence of HIF-1a, HIF-2a, HIF-3a, HSP27, and HOXC13 proteins was studied using immunohistochemistry and immunofluorescence. Light and electron microscopy revealed that the SFs of the Tibetan cashmere goats that lived in the Rikaze Steppe were in the proanagen stage in May. However, the SFs of the goats from the lower warmer Huan County were in the anagen stage at the same time. Immunohistochemistry revealed intense immunostaining for HIF-1a protein in the inner root sheath (IRS) and hair shaft (HS); immunostaining against HIF-2a in the outer root sheath (ORS) and IRS; HIF-3a protein immunostaining in the ORS; HSP27 immunostaining in the ORS, IRS, and HS; and HOXC13 immunostaining in the ORS and HS. HIF-1a protein expression in the IRS and HS was higher than the expression in the ORS (p < 0.05) while the expression of HIF-2a protein was higher in the ORS and IRS than the HS (p < 0.05). The expression of HIF-3a protein was higher in the ORS than in the IRS (p < 0.05). Expression of HOXC13 protein was higher in the ORS than in the IRS and HS (p < 0.05). Immunostaining of HIF-1a, HIF-2a, and HSP27 protein was significantly higher in SFs from cashmere goats from Rikaze than in goats from Huan (p < 0.05). In contrast, HOX13 protein immunostaining was significantly higher in cashmere goats from Huan than from Rikaze (p < 0.05). Significant differences were observed in the SFs of cashmere goats from two locations that differ in altitude and temperature. This suggests the differences in the secondary hair follicles could be due to the hypoxia and lower temperatures experienced by the goats in Rikaze. These results are useful in understanding how altitude and temperature influence SF development. Hair produced by the SFs are used for down fiber. Therefore, understanding of the factors that influence SF development will allow the production and harvest of these valuable fibers to be maximized.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ulf Anderegg ◽  
Norbert Halfter ◽  
Matthias Schnabelrauch ◽  
Vera Hintze

Abstract Wound healing and tissue regeneration are orchestrated by the cellular microenvironment, e.g. the extracellular matrix (ECM). Including ECM components in biomaterials is a promising approach for improving regenerative processes, e.g. wound healing in skin. This review addresses recent findings for enhanced epidermal-dermal regenerative processes on collagen (coll)/glycosaminoglycan (GAG)-based matrices containing sulfated GAG (sGAG) in simple and complex in vitro models. These matrices comprise 2D-coatings, electrospun nanofibrous scaffolds, and photo-crosslinked acrylated hyaluronan (HA-AC)/coll-based hydrogels. They demonstrated to regulate keratinocyte and fibroblast migration and growth, to stimulate melanogenesis in melanocytes from the outer root sheath (ORS) of hair follicles and to enhance the epithelial differentiation of human mesenchymal stem cells (hMSC). The matrices’ suitability for delivery of relevant growth factors, like heparin-binding epidermal growth factor like growth factor (HB-EGF), further highlights their potential as bioinspired, functional microenvironments for enhancing skin regeneration.


2021 ◽  
Vol 22 (10) ◽  
pp. 5404
Author(s):  
Hanluo Li ◽  
Hafiz Awais Nawaz ◽  
Federica Francesca Masieri ◽  
Sarah Vogel ◽  
Ute Hempel ◽  
...  

Bone transplantation is regarded as the preferred therapy to treat a variety of bone defects. Autologous bone tissue is often lacking at the source, and the mesenchymal stem cells (MSCs) responsible for bone repair mechanisms are extracted by invasive procedures. This study explores the potential of autologous mesenchymal stem cells derived from the hair follicle outer root sheath (MSCORS). We demonstrated that MSCORS have a remarkable capacity to differentiate in vitro towards the osteogenic lineage. Indeed, when combined with a novel gelatin-based hydrogel called Osteogel, they provided additional osteoinductive cues in vitro that may pave the way for future application in bone regeneration. MSCORS were also compared to MSCs from adipose tissue (ADMSC) and bone marrow (BMMSC) in a 3D Osteogel model. We analyzed gel plasticity, cell phenotype, cell viability, and differentiation capacity towards the osteogenic lineage by measuring alkaline phosphatase (ALP) activity, calcium deposition, and specific gene expression. The novel injectable hydrogel filled an irregularly shaped lesion in a porcine wound model displaying high plasticity. MSCORS in Osteogel showed a higher osteo-commitment in terms of calcium deposition and expression dynamics of OCN, BMP2, and PPARG when compared to ADMSC and BMMSC, whilst displaying comparable cell viability and ALP activity. In conclusion, autologous MSCORS combined with our novel gelatin-based hydrogel displayed a high capacity for differentiation towards the osteogenic lineage and are acquired by non-invasive procedures, therefore qualifying as a suitable and expandable novel approach in the field of bone regeneration therapy.


2021 ◽  
Vol 22 (9) ◽  
pp. 4581
Author(s):  
Yu-Jin Lee ◽  
Song-Hee Park ◽  
Hye-Ree Park ◽  
Young Lee ◽  
Hoon Kang ◽  
...  

Mesenchymal stem cell therapy (MSCT) has been shown to be a new therapeutic option for treating alopecia areata (AA). Outer root sheath cells (ORSCs) play key roles in maintaining the hair follicle structure and supporting the bulge area. In human ORSCs (hORSCs), the mechanism for this process has not been extensively studied. In this study, we aimed to examine the influence of human hematopoietic mesenchymal stem cells (hHMSCs) in the hORSCs in vitro model of AA and determine the mechanisms controlling efficacy. Interferon-gamma (IFN-γ) pretreatment was used to induce an in vitro model of AA in hORSCs. The effect of MSCT on the viability and migration of hORSCs was examined using co-cultures, the MTT assay, and migration assays. We investigated the expression of molecules related to the Wnt/β-catenin pathway, JAK/STAT pathway, and growth factors in hHMSC-treated hORSCs by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analyses. hHMSCs increased hORSC viability and migration when they were co-cultured. hHMSCs reverted IFN-γ-induced expression—including NLRP3, ASC, caspase-1, CXCL-9 through 11, IL-1β, and IL-15—and upregulated several growth factors and hair stem cell markers. hHMSCs activated several molecules in the Wnt/β-catenin signaling pathway, such as in the Wnt families, β-catenin, phosphorylated GSK-3β and cyclin D1, and suppressed the expression of DKK1 induced by IFN-γ in hORSCs. hHMSCs suppressed the phosphorylation of JAK1 to 3, STAT1, and STAT3 compared to the controls and IFN-γ-pretreated hORSCs. These results demonstrate that hHMSCs increased hORSC viability and migration in the in vitro AA model. Additionally, MSCT definitely stimulated anagen survival and hair growth in an HF organ culture model. MSCT appeared to be associated with the Wnt/β-catenin and JAK/STAT pathways in hORSCs.


2021 ◽  
Author(s):  
Mi Hee Kwack ◽  
Weon Ju Lee

Abstract Ginseng has been known in Korea as a health-supportive herbal medicine from time immemorial. Red ginseng is one of processed ginseng that is produced from white ginseng through steaming and drying. Many protective functions of red ginseng have been reported from various groups in many diseases. In this study, we first investigated whether red ginseng water extract (RG) aggravates inflammation in human sebocytes and outer root sheath (ORS) cells after treatment with lipopolysaccharide (LPS) and mice with Cutibacterium (C.) acnes strain (ATCC 1182)-induced inflammatory nodules. Sebocytes and ORS cells were isolated and cultured from the human scalp. The RG augmented LPS mediated inflammation by increased the mRNA and protein expression of inflammatory cytokines in sebocytes and ORS cells. In addition, RG also showed the increased protein expression of p-NFκB, p-c-jun and p-JNK in the LPS-treated sebocytes and ORS cells. Furthermore, RG upregulated the LPS-induced production of sebum in sebocytes. In addition, RG inhibited improvement of inflammatory nodules and showed the increased expression of inflammatory biomarkers in inflammatory nodules of Cutibacterium acnes injected mice. Collectively, our data strongly suggest that RG is one of the aggravating factors of acne vulgaris. It would be better to stop taking RG in patients with inflammatory acne.


Sign in / Sign up

Export Citation Format

Share Document