scholarly journals NiOOH/FeOOH Supported on Reduced Graphene Oxide Composite Electrodes for Ethanol Electrooxidation

2020 ◽  
Vol 2 (1) ◽  
pp. 17
Author(s):  
João Pedro Jenson de Oliveira ◽  
Acelino Cardoso de Sá ◽  
Leonardo Lataro Paim

In this work, nickel (Ni) and Ni-Fe bimetallic microparticles were electrosynthesized at reduction potentials in the range from −0.70 V to −1.20 V (50 mV s−1) by cyclic voltammetry (CV) onto graphite/paraffin electrode surface modified with nanosheets of reduced graphene oxide (RGO). Previously, the RGO was electrodeposited by CV from a suspension of 1 mg mL−1 of graphene oxide in PBS solution with pH 9.18, in the potential range from −1.50 V to 0.50 V (10 mV s−1). After electrodeposition of metals, the oxyhydroxides were formed by CV in an alkaline medium of 0.10 mol L−1 of NaOH in the potential range from −0.20 V to 1.0 V (100 mV s−1) with successive scans until stabilization of currents. In order to characterize the developed electrodes composites, the surfaces were investigated by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Electrochemical performance of the developed electrodes composites to ethanol electrooxidation was carried out in an alkaline medium of 0.10 mol L−1 of NaOH in the potential range from −0.20 V to 1.0 V (100 mV s−1) by CV. The electrodes were able to induce the electrooxidation of ethanol at a potential of 0.55 V for the electrode made of NiOOH/FeOOH and around of 0.60 V for the electrode modified with NiOOH.

2020 ◽  
Vol 2 (1) ◽  
pp. 2
Author(s):  
João Pedro Jenson de Oliveira ◽  
Acelino Cardoso de Sá ◽  
Leonardo Lataro Paim

This paper presents graphite/paraffin composite electrodes modified with microparticles of nickel (Ni) and Ni-Fe alloy anchored in reduced graphene oxide (rGO); these electrodes were made by electrosynthesis. Firstly, the electrodeposition of reduced graphene oxide was made by cyclic voltammetry (CV) onto the graphite/paraffin electrodes’ surface. After electrodeposition of the rGO, iron and nickel were electrodeposited by CV with successive scans. Finally, the formation of iron-nickel oxyhydroxide on the electrode surface was performed by cyclic voltammetry in alkaline medium. The composites were investigated by field emission gun scanning electron microscopy (FEG-SEM); it was observed that the Ni microparticles had spherical shapes, while the Ni-Fe alloy did not present a defined shape. The composite electrodes were used to analysis ethanol and methanol electrooxidation in an alkaline medium of 0.10 mol L−1 of NaOH in a potential range of from −0.20 to 1.0 V (vs. Ag/AgCl) at 50 mV s−1 by CV. The electrodes were able to make the electrooxidation of ethanol at a potential of around 0.57 V for the electrode constituted by the Ni-Fe alloy and around 0.61 V for the electrode modified with Ni, and for methanol in a potential around 0.57 V for the Ni-Fe alloy and around 0.66 V for the Ni electrode. The Ni-Fe alloy electrodes showed the electrocatalysis of the alcohols in relation to Ni electrodes.


2017 ◽  
Vol 5 (36) ◽  
pp. 19289-19296 ◽  
Author(s):  
M. C. Dilusha Cooray ◽  
Xiaolong Zhang ◽  
Ying Zhang ◽  
Steven J. Langford ◽  
Alan M. Bond ◽  
...  

A simple one pot hydrothermal procedure for the synthesis of cobalt selenide (CoSe) decorated reduced graphene oxide (rGO) is reported along with the application of this hybrid material as a new electrocatalyst for glucose oxidation.


2018 ◽  
Vol 14 (5) ◽  
pp. 616-628 ◽  
Author(s):  
Mehri-Saddat Ekrami-Kakhki ◽  
Nahid Farzaneh ◽  
Sedigheh Abbasi ◽  
Hadi Beitollahi ◽  
Seyed Ali Ekrami-Kakhki

Sign in / Sign up

Export Citation Format

Share Document